A review of lipase immobilization on hydrophobic supports incorporating systematic mapping principles

Literature Information

Publication Date 2023-09-08
DOI 10.1039/D3RE00420A
Impact Factor 4.239
Authors

Kaíque Souza Gonçalves Cordeiro Oliveira, Maria Carolina Pereira Gonçalves, João Paulo Romanelli, Laiane Antunes Lopes, Ángel Berenguer-Murcia, Roberto Fernandez-Lafuente, Paulo Waldir Tardioli



Abstract

A review of the literature covering research on the immobilization of lipases on hydrophobic supports was performed using systematic mapping (SM) concepts. This approach consists of a rigorous review of the methodology used to catalog evidence, to identify gaps at the frontier of knowledge, to identify unknown trends, and to list research groups. Our results show a wide variety of available lipases, including commercial, wild-type and recombinant strains. However, the most commonly used lipases are lipases from Thermomyces lanuginosus (TLL), Candida rugosa (CRL) or Rhizomucor miehei (RML) and lipase B from Candida antarctica (CALB). A wide variety of supports with different degrees of hydrophobicity were identified and the supports activated with a layer of octyl or octadecyl groups were the most commonly used. The advantages of lipase immobilization on these supports are discussed. Among them, the immobilization, purification, stabilization and hyperactivation of lipases in a single step stand out. Moreover, problems related to lipase immobilization by interfacial activation are highlighted (mainly enzyme release). Strategies to overcome these problems include immobilization on heterofunctional supports or intermolecular crosslinking of enzymes immobilized by physical and/or chemical agents. The possibility of increasing the capacity of supports by lipase multilayer immobilization is also discussed. Finally, the structure, distribution of the network and the frequency of co-occurrence between lipases and supports are elucidated to determine the possible hotspots and hitherto unexplored advances in knowledge.

Source Journal

Reaction Chemistry & Engineering

Reaction Chemistry & Engineering
CiteScore: 0
Self-citation Rate: 8.8%
Articles per Year: 284

Reaction Chemistry & Engineering is an interdisciplinary journal reporting cutting-edge research focused on enhancing the understanding and efficiency of reactions. Reaction engineering leverages the interface where fundamental molecular chemistry meets chemical engineering and technology. Challenges in chemistry can be overcome by the application of new technologies, while engineers may find improved solutions for process development from the latest developments in reaction chemistry. Reaction Chemistry & Engineering is a unique forum for researchers whose interests span the broad areas of chemical engineering and chemical sciences to come together in solving problems of importance to wider society. All papers should be written to be approachable by readers across the engineering and chemical sciences. Papers that consider multiple scales, from the laboratory up to and including plant scale, are particularly encouraged.

Recommended Suppliers

IndiaThermolab Scientific Equipments Pvt. Ltd.
ChinaZhejiang Chetou Pharmaceutical Co., Ltd.
ChinaNew Chong County Kangning Capsule Machinery Parts Co., Ltd.
GermanyHochrein Measuring Technology
ChinaChengdu Aofan Medicine Technology Co., Ltd.
ChinaZibo Jujin Chemical Industry Co., Ltd.
SpainSuminco, S.A.
SwitzerlandDr.Marino Müller AG
ChinaShenzhen Kangyuda Luminescent Materials Co., Ltd.
ChinaExcenen Pharmatech Co., Ltd
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.