A review of lipase immobilization on hydrophobic supports incorporating systematic mapping principles

文献情報

出版日 2023-09-08
DOI 10.1039/D3RE00420A
インパクトファクター 4.239
著者

Kaíque Souza Gonçalves Cordeiro Oliveira, Maria Carolina Pereira Gonçalves, João Paulo Romanelli, Laiane Antunes Lopes, Ángel Berenguer-Murcia, Roberto Fernandez-Lafuente, Paulo Waldir Tardioli



要旨

A review of the literature covering research on the immobilization of lipases on hydrophobic supports was performed using systematic mapping (SM) concepts. This approach consists of a rigorous review of the methodology used to catalog evidence, to identify gaps at the frontier of knowledge, to identify unknown trends, and to list research groups. Our results show a wide variety of available lipases, including commercial, wild-type and recombinant strains. However, the most commonly used lipases are lipases from Thermomyces lanuginosus (TLL), Candida rugosa (CRL) or Rhizomucor miehei (RML) and lipase B from Candida antarctica (CALB). A wide variety of supports with different degrees of hydrophobicity were identified and the supports activated with a layer of octyl or octadecyl groups were the most commonly used. The advantages of lipase immobilization on these supports are discussed. Among them, the immobilization, purification, stabilization and hyperactivation of lipases in a single step stand out. Moreover, problems related to lipase immobilization by interfacial activation are highlighted (mainly enzyme release). Strategies to overcome these problems include immobilization on heterofunctional supports or intermolecular crosslinking of enzymes immobilized by physical and/or chemical agents. The possibility of increasing the capacity of supports by lipase multilayer immobilization is also discussed. Finally, the structure, distribution of the network and the frequency of co-occurrence between lipases and supports are elucidated to determine the possible hotspots and hitherto unexplored advances in knowledge.

掲載誌

Reaction Chemistry & Engineering

Reaction Chemistry & Engineering
CiteScore: 0
自己引用率: 8.8%
年間論文数: 284

Reaction Chemistry & Engineering is an interdisciplinary journal reporting cutting-edge research focused on enhancing the understanding and efficiency of reactions. Reaction engineering leverages the interface where fundamental molecular chemistry meets chemical engineering and technology. Challenges in chemistry can be overcome by the application of new technologies, while engineers may find improved solutions for process development from the latest developments in reaction chemistry. Reaction Chemistry & Engineering is a unique forum for researchers whose interests span the broad areas of chemical engineering and chemical sciences to come together in solving problems of importance to wider society. All papers should be written to be approachable by readers across the engineering and chemical sciences. Papers that consider multiple scales, from the laboratory up to and including plant scale, are particularly encouraged.

おすすめサプライヤー

中国上海優拓医薬科技有限公司
中国徐州瀚邦化工有限公司
アメリカ合衆国エンテグリス株式会社
ドイツSYNTHOMER Deutschland GmbH
カナダEcoSynthetix株式会社。
中国武汉武大弘元株式会社
中国珠海美通化学预分散颜料色片有限公司
ドイツテスアップ
ドイツSchwedes + Schulze Schüttguttechnik GmbH シューデス + シュルツェ
イギリスエリート・サーマル・システムズ株式会社
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。