Black soybean seed coat polyphenols have different effects on glucose and lipid metabolism in growing and young adult mice
Literature Information
Toshiki Nishijima, Yoko Yamashita, Hitoshi Ashida
Black soybean contains flavan-3-ols and cyanidin 3-O-glucoside in its seed coat. Polyphenol-rich black soybean seed coat extract (BE) possesses various health benefits, such as antioxidant, anti-obesity, and anti-hyperglycemic effects. However, these functions have been evaluated mainly in the growing stage of animals, and there is no comparison data for different life stages. In this present study, we compared the effect of BE in growing (5-week old) and young adult (22-week old) ICR male mice. These mice were given an AIN 93M diet containing 2.0% BE for 4 weeks. BE did not affect body weight gain in both growing and young adult mice, but it suppressed mesenteric and subcutaneous white adipose tissue weights and decreased the cell size. BE also significantly suppressed plasma free-fatty acid levels. The effect of both BE and life stages were observed in the protein expression of adipogenesis-related transcription factors; in particular, BE suppressed the expression of C/EBPα and PPARγ. No significant change was observed in lipolysis and lipogenesis factors in the white adipose tissue and liver. Alternatively, BE showed low glucose tolerance without affecting plasma insulin levels after glucose loading in young adult mice, as seen from the results of the oral glucose tolerance test. However, plasma glucose and insulin levels remained unchanged at the end of the experimental period. In conclusion, these results strongly suggest that the health-beneficial effects of BE may alter in mice at different life stages.
Related Literature
IF 6.367
Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA deliveryIF 6.843
Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysisIF 6.367
Pulsed laser rusted stainless steel: a robust electrode material applied for energy storage and generation applicationsIF 6.367
Synthesis of aviation fuel from bio-derived isophoroneIF 6.367
An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineeringIF 6.843
Solventless thermal crosslinked polymer protective layer for high stable lithium metal batteriesIF 6.367
Insights into the mechanism of photosynthetic H2 evolution catalyzed by a heptacoordinate cobalt complexIF 6.367
Developing a novel high performance NaNbO3-based lead-free dielectric capacitor for energy storage applicationsIF 6.367
Selective production of monocyclic aromatic hydrocarbons from ex situ catalytic fast pyrolysis of pine over the HZSM-5 catalyst with calcium formate as a hydrogen sourceIF 6.367
Source Journal
Food & Function

Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish novel, cutting-edge, original research focussing on food, its nutrients and their relation to human health and nutrition. We welcome research describing the: Physical properties and structure of food and how this relates to sensory perception and human health Biochemical and physiological actions of food components Interactions between foods, gut microbiota and human physiology Nutritional and biological evaluation of food Clinical and population studies using food or food components Development of biomarkers of food intake and effects on human health We also welcome systematic reviews and meta-analyses of existing studies in the literature, provided these are objective and scientifically valid Food in this context is defined as materials of plant, animal or mineral origin, which are consumed orally (by humans) for pleasure and to sustain growth and vital processes. Examples of research topics that are of interest to be published in Food & Function are: Chemistry and physics of food components and digestion processes Relationship between the physical properties/structure of food and nutrition and human health - for example, impact of food matrix or processing on nutrient release and uptake Molecular properties and physiological effects of food components (nutrients, fibres, essential micronutrients, phytochemicals, bioactives, food substitutes, novel ingredients, allergens, flavours and fragrances) Nutritional and health effects of food including bioavailability and metabolism assessment of food components (nutrients, micronutrients and other microconstituents) Efficacy and mechanisms of food constituents in the body - including biomarkers of intakes, exposure and effects Impacts of foods/food components on gut microorganisms and human physiology - For example impact of fermented foods Role of nutrition and diet in human disease prevention and development Cellular and molecular effects/mechanisms of food/food components image block The following types of research are not within the scope of Food & Function: Research relating to traditional herbal medicines, medicinal plants or active compounds extracted from such plants (materials that are primarily consumed as medicine, i.e. the intended purpose is primarily to treat, cure or prevent a non-deficiency disease) or relating to foods not recognised as human diet contributors Animal nutrition research that is not primarily designed as a model to benefit human nutrition (for example, studies of growth/accretion, heat stress, weaning, ruminant digestion, meat quality, etc.) Treatments administered by non-oral routes such as injection (subcutaneous, intramuscular, intraperitoneal, etc.), dermal/transdermal, rectal, inhalation, nasal, etc. Exceptions are when such routes of administration are used for mechanistic/control purposes in the experimental design Pharmacological/pharmaceutical approaches: Encapsulation, emulsification and/or pure controlled release of compounds or bioactives that do not come directly from edible foods, such as dietary supplements - these are better suited to a pharmaceutical journal In vitro or in vivo studies with poorly defined (insufficiently characterised) extracts and studies without appropriate controls will not be considered Cells studies not considering the metabolism of food components ingested – for example, irrelevant exposure of cells to compounds not present in the body after absorption Manuscripts with only a fully theoretical/bioinformatic approach and without appropriate support from analytical evidence will not be considered for publication Studies focussing solely on food engineering, preservation and sustainable technologies – these can be published in our companion journal Sustainable Food Technology Pure food analysis - these can be published in Analytical Methods