Direct ocean capture: the emergence of electrochemical processes for oceanic carbon removal

Literature Information

Publication Date 2023-08-21
DOI 10.1039/D3EE01471A
Impact Factor 38.532
Authors

Prince Aleta, Abdelrahman Refaie, Mohsen Afshari, Ahmad Hassan



Abstract

The urgent need for effective climate change mitigation has spurred the exploration of various negative emission technologies (NETs). Here, we investigate recent advancements and challenges in electrochemical direct ocean capture (eDOC) of carbon dioxide (CO2), a promising NET for oceanic carbon removal. We analyze different eDOC strategies, focusing on pH swing as the primary mechanism for ocean dissolved inorganic carbon removal, and examine techno-economic challenges, such as achieving industrially preferred current densities and reducing overall costs. Early designs have relied on bipolar membrane electrodialysis, while recent developments have eliminated the need for membranes entirely. We compare different approaches, highlighting the limitations of current eDOC systems. Our study provides insights into the optimization of eDOC systems, suggesting further research is needed to improve system efficiency and address design bottlenecks for large-scale deployment. Ultimately, these advancements will play a crucial role in realizing the full potential of eDOC as an economically viable and environmentally sustainable NET for mitigating climate change.

Source Journal

Energy & Environmental Science

Energy & Environmental Science
CiteScore: 32.34
Self-citation Rate: 3.4%
Articles per Year: 481

Energy & Environmental Science is an international journal dedicated to publishing exceptionally important and high quality, agenda-setting research tackling the key global and societal challenges of ensuring the provision of energy and protecting our environment for the future. The scope is intentionally broad and the journal recognises the complexity of issues and challenges relating to energy conversion and storage, alternative fuel technologies and environmental science. For work to be published it must be linked to the energy-environment nexus and be of significant general interest to our community-spanning readership. All scales of studies and analysis, from impactful fundamental advances, to interdisciplinary research across the (bio)chemical, (bio/geo)physical sciences and chemical engineering disciplines are welcomed. Topics include, but are not limited to, the following: Solar energy conversion and photovoltaics Solar fuels and artificial photosynthesis Fuel cells Hydrogen storage and (bio) hydrogen production Materials for energy systems Capture, storage and fate of CO2, including chemicals and fuels from CO2 Catalysis for a variety of feedstocks (for example, oil, gas, coal, biomass and synthesis gas) Biofuels and biorefineries Materials in extreme environments Environmental impacts of energy technologies Global atmospheric chemistry and climate change as related to energy systems Water-energy nexus Energy systems and networks Globally applicable principles of energy policy and techno-economics

Recommended Suppliers

ChinaWuhan Rongshen Chemical Industry Co., Ltd
United StatesAJAY NORTH AMERICA, L.L.C.
GermanyClaudius Peters Group GmbH
ChinaHainan PuLi Pharmaceutical Co., Ltd.
GermanyPaul Leibinger GmbH & Co. KG
ChinaHuzhou Hehua Machinery Co., Ltd.
MexicoAlquim Especialidades Químicas, S.A. de C.V.
GermanyChemiewerk Bad Köstritz
GermanyDECKMA HAMBURG GmbH
ChinaShenzhen Kangyuda Luminescent Materials Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.