Direct ocean capture: the emergence of electrochemical processes for oceanic carbon removal

文献信息

发布日期 2023-08-21
DOI 10.1039/D3EE01471A
影响因子 38.532
作者

Prince Aleta, Abdelrahman Refaie, Mohsen Afshari, Ahmad Hassan



摘要

The urgent need for effective climate change mitigation has spurred the exploration of various negative emission technologies (NETs). Here, we investigate recent advancements and challenges in electrochemical direct ocean capture (eDOC) of carbon dioxide (CO2), a promising NET for oceanic carbon removal. We analyze different eDOC strategies, focusing on pH swing as the primary mechanism for ocean dissolved inorganic carbon removal, and examine techno-economic challenges, such as achieving industrially preferred current densities and reducing overall costs. Early designs have relied on bipolar membrane electrodialysis, while recent developments have eliminated the need for membranes entirely. We compare different approaches, highlighting the limitations of current eDOC systems. Our study provides insights into the optimization of eDOC systems, suggesting further research is needed to improve system efficiency and address design bottlenecks for large-scale deployment. Ultimately, these advancements will play a crucial role in realizing the full potential of eDOC as an economically viable and environmentally sustainable NET for mitigating climate change.

来源期刊

Energy & Environmental Science

Energy & Environmental Science
CiteScore: 32.34
自引率: 3.4%
年发文量: 481

Energy & Environmental Science is an international journal dedicated to publishing exceptionally important and high quality, agenda-setting research tackling the key global and societal challenges of ensuring the provision of energy and protecting our environment for the future. The scope is intentionally broad and the journal recognises the complexity of issues and challenges relating to energy conversion and storage, alternative fuel technologies and environmental science. For work to be published it must be linked to the energy-environment nexus and be of significant general interest to our community-spanning readership. All scales of studies and analysis, from impactful fundamental advances, to interdisciplinary research across the (bio)chemical, (bio/geo)physical sciences and chemical engineering disciplines are welcomed. Topics include, but are not limited to, the following: Solar energy conversion and photovoltaics Solar fuels and artificial photosynthesis Fuel cells Hydrogen storage and (bio) hydrogen production Materials for energy systems Capture, storage and fate of CO2, including chemicals and fuels from CO2 Catalysis for a variety of feedstocks (for example, oil, gas, coal, biomass and synthesis gas) Biofuels and biorefineries Materials in extreme environments Environmental impacts of energy technologies Global atmospheric chemistry and climate change as related to energy systems Water-energy nexus Energy systems and networks Globally applicable principles of energy policy and techno-economics

推荐供应商

中国杭州艾贝有限公司
中国深圳市诚峰智造有限公司
西班牙CEPSA
中国乔克电子排水阀上海销售公司
中国武汉武大弘元股份有限公司
德国斯坦豪斯
中国上海德祥医药技术有限公司
德国TOPLAB GmbH
中国安徽南方化工泵业有限公司
德国F.I.R.S.T 技术科学软件应用协会 mbH
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。