Classification of crystal structures of thiophene-containing organic semiconductors

Literature Information

Publication Date 2023-10-17
DOI 10.1039/D3CE00893B
Impact Factor 3.545
Authors



Abstract

Oligothiophenes and thienoacenes are essential components of organic semiconductors and usually form herringbone structures with dihedral angles of θ = 50–60°. However, when more than three thiophene rings are fused, a stacking structure with θ = 125–130° appears. Since the molecules are located on a lattice point, the lattice constants as well as the intermolecular geometry are obtained by a simple relation of θ and the molecular size. Stacking structures are preferred when the peripheral hydrogen atoms are lost or when polar oxygen atoms are included. Coronene and ovalene with more than a three-ring width form a stacking structure called the γ-structure with θ = 90°, and some molecules form pitched π-stacking with a nonparallel terminal contact, where the intermolecular geometry is obtained by the same relation as the herringbone structures. For the molecular rotation of the γ-structure within the molecular plane, the nonparallel contact is usually formed using the molecular zigzag edge.

Source Journal

CrystEngComm

CrystEngComm
CiteScore: 5.5
Self-citation Rate: 7.7%
Articles per Year: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

Recommended Suppliers

United StatesNiro Inc.
ChinaFoshan City Nuoyin Precious Metals Materials Co., Ltd.
GermanySchramm Coatings GmbH
United KingdomBaerlocher UK
ChinaShandong Baiqi Biopharmaceutical Biomedical Co., Ltd.
SwitzerlandGalvano Wullimann AG
AustriaBerndorf Band GmbH
ChinaGuangzhou Mumo Yin Industry Co., Ltd
ChinaRainen (Changzhou) International Trade Co., Ltd.
ChinaShanghai KaiTe Biotechnology Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.