Classification of crystal structures of thiophene-containing organic semiconductors

文献信息

发布日期 2023-10-17
DOI 10.1039/D3CE00893B
影响因子 3.545
作者



摘要

Oligothiophenes and thienoacenes are essential components of organic semiconductors and usually form herringbone structures with dihedral angles of θ = 50–60°. However, when more than three thiophene rings are fused, a stacking structure with θ = 125–130° appears. Since the molecules are located on a lattice point, the lattice constants as well as the intermolecular geometry are obtained by a simple relation of θ and the molecular size. Stacking structures are preferred when the peripheral hydrogen atoms are lost or when polar oxygen atoms are included. Coronene and ovalene with more than a three-ring width form a stacking structure called the γ-structure with θ = 90°, and some molecules form pitched π-stacking with a nonparallel terminal contact, where the intermolecular geometry is obtained by the same relation as the herringbone structures. For the molecular rotation of the γ-structure within the molecular plane, the nonparallel contact is usually formed using the molecular zigzag edge.

来源期刊

CrystEngComm

CrystEngComm
CiteScore: 5.5
自引率: 7.7%
年发文量: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

推荐供应商

德国ABB AG
中国浙江隆源压滤机有限公司
德国E.Georg Lüdecke Armaturen GmbH
德国埃德尔斯塔尔服务公司
中国德国瑞达有限公司北京代表处
中国瑞纳森(常州)国际贸易有限公司
瑞士KIMAESA AG
德国SITA Messtechnik GmbH
中国上海旭升精细化工技术研究所
中国武汉八颗星生物科技有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。