Comment on “Proton transport in barium stannate: classical, semi-classical and quantum regimes” by G. Geneste, A. Ottochian, J. Hermet and G. Dezanneau, Phys. Chem. Chem. Phys., 2015, 17, 19104

Literature Information

Publication Date 2017-07-10
DOI 10.1039/C6CP06763H
Impact Factor 3.676
Authors

Alexander L. Samgin, Alexander N. Ezin



Abstract

In a recent paper in this journal, proton transport in oxides was considered in terms of density functional theory and the non-adiabatic Flynn–Stoneham approach of small polaron type proposed much earlier for metals. Also, regimes of hydrogen diffusion relevant to oxides were reviewed, but the straightforwardly observable channel of low-temperature over-barrier jumps has passed unnoticed. We offer this latter possibility, together with some additional arguments, to make our objection more compelling. There are two major contentious findings in the article. First, in discussing the phonon-assisted quantum regime and the adiabatic coincidence configuration in barium stannate, the article claimed that the models based on a fully non-adiabatic picture for metals cannot be generalized to proton-conducting oxides. It is difficult to agree with such a viewpoint because such generalizations are being published. By means of a counterexample, this comment illustrates the real efficacy of using Flynn–Stoneham-like models in studying these oxides. Second, we have strong grounds for supposing that the main claim of the paper being commented on about the adiabatic nature of the proton transfer is in conflict with general interpretation of small polaron hopping. The exact knowledge of energy barriers for proton transfer is needed to confirm the validity of assuming an adiabatic regime. Since the most likely influence of the functional on the adiabaticity criterion formulation is certainly evident, comparison of the results of Geneste et al. to results obtained with higher functionals may check the validity of the present GGA-PBE scheme.

Source Journal

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics
CiteScore: 5.5
Self-citation Rate: 10.3%
Articles per Year: 3036

Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.

Recommended Suppliers

IndonesiaVan Aroma
GermanyPolysius AG
ChinaZhongshan Kangzhiyuan Biotechnology Co., Ltd.
GermanyZIAG Plant Engineering GmbH
GermanyAylward Europe, GmbH
ChinaShaanxi Bolin Biotechnology Co., Ltd.
ChinaShanxi Leixin Chemical Co., Ltd.
ChinaHubei Xin Desheng Materials Technology Co., Ltd.
GermanyPaul Leibinger GmbH & Co. KG
GermanyFVG-Filter Vertriebs GmbH
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.