Comment on “Proton transport in barium stannate: classical, semi-classical and quantum regimes” by G. Geneste, A. Ottochian, J. Hermet and G. Dezanneau, Phys. Chem. Chem. Phys., 2015, 17, 19104

文献情報

出版日 2017-07-10
DOI 10.1039/C6CP06763H
インパクトファクター 3.676
著者

Alexander L. Samgin, Alexander N. Ezin



要旨

In a recent paper in this journal, proton transport in oxides was considered in terms of density functional theory and the non-adiabatic Flynn–Stoneham approach of small polaron type proposed much earlier for metals. Also, regimes of hydrogen diffusion relevant to oxides were reviewed, but the straightforwardly observable channel of low-temperature over-barrier jumps has passed unnoticed. We offer this latter possibility, together with some additional arguments, to make our objection more compelling. There are two major contentious findings in the article. First, in discussing the phonon-assisted quantum regime and the adiabatic coincidence configuration in barium stannate, the article claimed that the models based on a fully non-adiabatic picture for metals cannot be generalized to proton-conducting oxides. It is difficult to agree with such a viewpoint because such generalizations are being published. By means of a counterexample, this comment illustrates the real efficacy of using Flynn–Stoneham-like models in studying these oxides. Second, we have strong grounds for supposing that the main claim of the paper being commented on about the adiabatic nature of the proton transfer is in conflict with general interpretation of small polaron hopping. The exact knowledge of energy barriers for proton transfer is needed to confirm the validity of assuming an adiabatic regime. Since the most likely influence of the functional on the adiabaticity criterion formulation is certainly evident, comparison of the results of Geneste et al. to results obtained with higher functionals may check the validity of the present GGA-PBE scheme.

掲載誌

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics
CiteScore: 5.5
自己引用率: 10.3%
年間論文数: 3036

Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.

おすすめサプライヤー

中国广州木森薬業有限公司
中国成都迈德精化科技有限公司
中国涟水县依顺環保有限公司
ドイツブクラー GmbH
中国江西萬香萃バイオテクノロジーカンパニー
ドイツOTTO KLEIN GMBH
ドイツbiotronix GmbH
中国重庆宸城医药有限公司
中国イ有意思的翻译有点问题,应该是无锡嘉屹化工有限公司\n无锡嘉屹化工有限公司
中国鎧碩化学工業販売有限公司
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。