Probing the nature and resistance of the molecule–electrode contact in SAM-based junctions

Literature Information

Publication Date 2015-06-11
DOI 10.1039/C5NR02570B
Impact Factor 7.79
Authors

C. S. Suchand Sangeeth, Albert Wan



Abstract

It is challenging to quantify the contact resistance and to determine the nature of the molecule–electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM–electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (CSAM) and the resistance of the SAM (RSAM)), unlike DC methods, independently of each other. We found that the resistance of the top-electrode–SAM contact for junctions with the form of AgTS–SCn//GaOx/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than RSAM. The CSAM and RSAM are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible.

Source Journal

Nanoscale

Nanoscale
CiteScore: 12.1
Self-citation Rate: 5.2%
Articles per Year: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

Recommended Suppliers

GermanyShimadzu Deutschland GmbH
GermanyBuchler GmbH
ArgentinaHelm Argentina SRL
GermanyAstroNova GmbH
ChinaShanghai Kain Biopharm Technology Co., Ltd.
ChinaWuxi Jayee Chemical Co., Ltd.
ChinaYangzhou Changhu Biotechnology Co., Ltd.
ChinaBaoji Baoyi Titanium Nickel Manufacturing Co., Ltd.
United StatesBrookhaven Instruments Corporation
GermanySystec GmbH & Co. KG
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.