Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li–O2 batteries

Literature Information

Publication Date 2015-06-15
DOI 10.1039/C5NR02487K
Impact Factor 7.79
Authors

Xiaofei Hu, Zhiqiang Zhu, Fangyi Cheng, Zhanliang Tao



Abstract

Rechargeable Li–O2 batteries with high theoretical energy density urgently require efficient cathode catalysts to improve their electrochemical performance. Here we first demonstrated the application of Ni-based organic frameworks of Ni(4,4′-bipy)(H3BTC) (4,4′-bipy = 4,4′-bipyridine; H3BTC = 1,3,5-benzenetricarboxylic acid) (Ni-MOFs) as high-performance cathode catalysts for rechargeable Li–O2 batteries. It is found that Ni-MOFs with a three-dimensional (3D) micro-nano structure, open catalytic sites and large specific surface area can guarantee the free transfer of O2 and effective contact between the electrolyte and the catalytic sites. Preliminary testing of Ni-MOFs showed that they possess an extremely high capacity of 9000 mA h g−1, a high round-trip efficiency of 80%, and a respectable cycling of 170 cycles without obvious voltage drop. Furthermore, plastic rechargeable Li–O2 batteries with Ni-MOFs as the cathode catalyst have been assembled, displaying an energy density of 478 Wh kg−1. This study leads to both fundamental and technological advances of Ni-MOFs as the cathode for rechargeable Li–O2 batteries.

Source Journal

Nanoscale

Nanoscale
CiteScore: 12.1
Self-citation Rate: 5.2%
Articles per Year: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

Recommended Suppliers

ChinaBengbu Onereed Chemical Materials Sales Co., Ltd.
GermanyConsic Software Engineering
ChinaShandong Boxing Xinhuang Food Machinery Industry Co., Ltd.
ChinaBeijing Jinyuan Chemical Group Co., Ltd.
GermanyMCI - Miritz Citrus Ingredients GmbH
GermanyTeSup
ChinaChangzhou Kewei Fine Chemical Co., Ltd.
ChinaZhejiang Weirong Pharmaceutical Chemical Co., Ltd.
GermanyDaXem GmbH
ChinaQingdao Xinxingtai Biotechnology Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.