Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li–O2 batteries
文献情報
Xiaofei Hu, Zhiqiang Zhu, Fangyi Cheng, Zhanliang Tao
Rechargeable Li–O2 batteries with high theoretical energy density urgently require efficient cathode catalysts to improve their electrochemical performance. Here we first demonstrated the application of Ni-based organic frameworks of Ni(4,4′-bipy)(H3BTC) (4,4′-bipy = 4,4′-bipyridine; H3BTC = 1,3,5-benzenetricarboxylic acid) (Ni-MOFs) as high-performance cathode catalysts for rechargeable Li–O2 batteries. It is found that Ni-MOFs with a three-dimensional (3D) micro-nano structure, open catalytic sites and large specific surface area can guarantee the free transfer of O2 and effective contact between the electrolyte and the catalytic sites. Preliminary testing of Ni-MOFs showed that they possess an extremely high capacity of 9000 mA h g−1, a high round-trip efficiency of 80%, and a respectable cycling of 170 cycles without obvious voltage drop. Furthermore, plastic rechargeable Li–O2 batteries with Ni-MOFs as the cathode catalyst have been assembled, displaying an energy density of 478 Wh kg−1. This study leads to both fundamental and technological advances of Ni-MOFs as the cathode for rechargeable Li–O2 batteries.
関連文献
IF 6.222
Retraction: Chemical synthesis and antigenic activity of a phosphatidylinositol mannoside epitope from Mycobacterium tuberculosisIF 6.222
From Douglas fir to renewable H2-enriched syngas via ex situ catalytic pyrolysis over metal nanoparticles–nanocellulose derived carbon catalystsIF 6.367
Carbon and carbon composites obtained using deep eutectic solvents and aqueous dilutions thereofIF 6.222
An aminophosphonate ester ligand-containing platinum(ii) complex induces potent immunogenic cell death in vitro and elicits effective anti-tumour immune responses in vivoIF 6.222
Performance of electrode-supported silica membrane separators in lithium-ion batteriesIF 6.367
Mechanically stable and economically viable polyvinyl alcohol-based membranes with sulfonated carbon nanotubes for proton exchange membrane fuel cellsIF 6.367
Synthesis and optical and electronic properties of one-dimensional sulfoxonium-based hybrid metal halide (CH3)3SOPbI3IF 6.222
Cu2ZnSnS4 nanocrystals for microwave thermal and microwave dynamic combination tumor therapyIF 6.222
A model-based comparison of Ru and Ni catalysts for the Sabatier reactionIF 6.367
掲載誌
Nanoscale

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.