Enhanced thermoelectric figure of merit in thin GaAs nanowires
Literature Information
Xiaolong Zou, Xiaobin Chen, Huaqing Huang, Yong Xu, Wenhui Duan
Combining density functional theory and the nonequilibrium Green's function method, we investigate the thermoelectric properties of thin GaAs nanowires (NWs). After identifying the most stable structures for GaAs NWs, either in wurtzite (wz) or zinc blende (zb) stacking, we present a systematic analysis on the thermoelectric properties of these NWs and their dependence on stacking type (wz or zb), size of NWs, and temperature. Although bulk GaAs is a well-known poor thermoelectric material, the thermoelectric figure of merit, ZT, is significantly enhanced in thin GaAs NWs. Typically, the room temperature ZT of a 1.1 nm-diameter GaAs NW reaches as high as 1.34, exhibiting more than 100-fold improvement over the bulk counterpart, which is attributed to both the reduced thermal conduction and enhanced power factor in thin NWs. Adopting their unique electronic characteristics, further enhancement is possible through surface engineering, for example, the introduction of surface roughness or dopants.
Related Literature
IF 6.843
Pulsed laser rusted stainless steel: a robust electrode material applied for energy storage and generation applicationsIF 6.367
Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzerIF 6.367
Cu2ZnSnS4 nanocrystals for microwave thermal and microwave dynamic combination tumor therapyIF 6.222
PEST (political, environmental, social & technical) analysis of the development of the waste-to-energy anaerobic digestion industry in China as a representative for developing countriesIF 6.367
Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA deliveryIF 6.843
Redox responsive Pluronic micelle mediated delivery of functional siRNA: a modular nano-assembly for targeted deliveryIF 6.843
Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticlesIF 6.843
MnO/C cubo-polyhedrons derived from α-MnO2@ZIF-8 as anode materials for high-performance lithium-ion batteriesIF 6.367
Surface structure-dependent electrocatalytic reduction of CO2 to C1 products on SnO2 catalystsIF 6.367
Source Journal
Nanoscale

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.