Enhanced thermoelectric figure of merit in thin GaAs nanowires
文献信息
Xiaolong Zou, Xiaobin Chen, Huaqing Huang, Yong Xu, Wenhui Duan
Combining density functional theory and the nonequilibrium Green's function method, we investigate the thermoelectric properties of thin GaAs nanowires (NWs). After identifying the most stable structures for GaAs NWs, either in wurtzite (wz) or zinc blende (zb) stacking, we present a systematic analysis on the thermoelectric properties of these NWs and their dependence on stacking type (wz or zb), size of NWs, and temperature. Although bulk GaAs is a well-known poor thermoelectric material, the thermoelectric figure of merit, ZT, is significantly enhanced in thin GaAs NWs. Typically, the room temperature ZT of a 1.1 nm-diameter GaAs NW reaches as high as 1.34, exhibiting more than 100-fold improvement over the bulk counterpart, which is attributed to both the reduced thermal conduction and enhanced power factor in thin NWs. Adopting their unique electronic characteristics, further enhancement is possible through surface engineering, for example, the introduction of surface roughness or dopants.
相关文献
IF 6.222
Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon clothIF 6.367
CaMoO4 nanosheet arrays for efficient and durable water oxidation electrocatalysis under alkaline conditionsIF 6.222
Sugar ketals as a platform molecule to overcome the limitation of converting biomass into green-hydrocarbons in a typical refineryIF 6.367
The dilemma between acid and base catalysis in the synthesis of benzimidazole from o-phenylenediamine and carbon dioxide‡IF 6.222
Recent developments in carbon nitride based films for photoelectrochemical water splittingIF 6.367
Visible light-driven cross-coupling reactions of alkyl halides with phenylacetylene derivatives for C(sp3)–C(sp) bond formation catalyzed by a B12 complexIF 6.222
Life cycle assessment of plasma-assisted ethylene production from rich-in-methane gas streamsIF 6.367
From zinco(ii) arsaketenes to silylene-stabilised zinco arsinidene complexesIF 6.222
Ether-functionalization of monoethanolamine (MEA) for reversible CO2 capture under solvent-free conditions with high-capacity and low-viscosityIF 6.367
来源期刊
Nanoscale

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.