An in vivo highly antitumor-active tetrazolato-bridged dinuclear platinum(ii) complex largely circumvents in vitro cisplatin resistance: two linkage isomers yield the same product upon reaction with 9-ethylguanine but exhibit different cytotoxic profiles
Literature Information
Masako Uemura, Toshihiro Suzuki, Kazuto Nishio, Masahiko Chikuma, Seiji Komeda
Cytotoxicity assays of azolato-bridged dinuclear Pt(II) complexes, [{cis-Pt(NH3)2}2(μ-OH)(μ-azolato)]2+, where the azolato was pyrazolato (1), 1,2,3-triazolato-N1,N2 (2), tetrazolato-N1,N2 (3), or tetrazolato-N2,N3 (4), were performed in cisplatin-sensitive and -resistant human non-small-cell lung cancer cell lines (PC-9 and PC-14). These complexes largely circumvented the cisplatin resistance in both cell lines, with resistance factors for 1–4 in the range of 0.5–0.8 and 0.9–2.0 for PC-9 and PC-14 cells, respectively. Complex 4 exhibited approximately 10 times the cytotoxicity of 3. When 3 and 4 were reacted with 2 molar equiv. of 9-ethylguanine (9EtG), they yielded an identical product, [{cis-Pt(NH3)2(9EtG-N7)}2(μ-tetrazolato-N1,N3)]3+, that had N1,N3 platinum coordination through a Pt(II) migration process on the tetrazolate ring. The second-order rate kinetics of these isomers were almost the same as each other and faster than those of 1 and 2. The cytotoxicity of azolato-bridged complexes, except for 3, increases as their kinetic rates in the 9EtG reaction increase.
Recommended Journals
Related Literature
IF 6.367
Biomimetic hydrogels designed for cartilage tissue engineeringIF 6.843
Synthesis and optical and electronic properties of one-dimensional sulfoxonium-based hybrid metal halide (CH3)3SOPbI3IF 6.222
An elemental S/P photocatalyst for hydrogen evolution from water under visible to near-infrared light irradiationIF 6.222
Chemoproteomics-based target profiling of sinomenine reveals multiple protein regulators of inflammationIF 6.222
Front coverIF 6.222
Inside back coverIF 6.222
Front coverIF 6.843
Back coverIF 6.222
Mechanism of lignocellulose modification and enzyme disadsorption for complete biomass saccharification to maximize bioethanol yield in rapeseed stalksIF 6.367
Source Journal
Metallomics

Metallomics publishes cutting-edge investigations aimed at elucidating the identification, distribution, dynamics, role and impact of metals and metalloids in biological systems. Studies that address the “what, where, when, how and why” of these inorganic elements in cells, tissues, organisms, and various environmental niches are welcome, especially those employing multidisciplinary approaches drawn from the analytical, bioinorganic, medicinal, environmental, biophysical, cell biology, plant biology and chemical biology communities. We are particularly interested in articles that enhance our chemical and/or physical understanding of the molecular mechanisms of metal-dependent life processes, and those that probe the common space between metallomics and other ‘omics approaches to uncover new insights into biological processes. Metallomics seeks to position itself at the forefront of those advances in analytical chemistry destined to clarify the enormous complexity of biological systems. As such, we particularly welcome those papers that outline cutting-edge analytical technologies, e.g., in the development and application of powerful new imaging, spectroscopic and mass spectrometric modalities. Work that describes new insights into metal speciation, trafficking and dynamics in complex systems or as a function of microenvironment are also strongly encouraged. Studies that examine the interconnectivity of metal-dependent processes with systems level responses relevant to organismal health or disease are also strongly encouraged, for example those that probe the effect of chemical exposure on metal homeostasis or the impact of metal-based drugs on cellular processes.