An in vivo highly antitumor-active tetrazolato-bridged dinuclear platinum(ii) complex largely circumvents in vitro cisplatin resistance: two linkage isomers yield the same product upon reaction with 9-ethylguanine but exhibit different cytotoxic profiles

文献信息

发布日期 2012-04-03
DOI 10.1039/C2MT20026K
影响因子 0
作者

Masako Uemura, Toshihiro Suzuki, Kazuto Nishio, Masahiko Chikuma, Seiji Komeda



摘要

Cytotoxicity assays of azolato-bridged dinuclear Pt(II) complexes, [{cis-Pt(NH3)2}2(μ-OH)(μ-azolato)]2+, where the azolato was pyrazolato (1), 1,2,3-triazolato-N1,N2 (2), tetrazolato-N1,N2 (3), or tetrazolato-N2,N3 (4), were performed in cisplatin-sensitive and -resistant human non-small-cell lung cancer cell lines (PC-9 and PC-14). These complexes largely circumvented the cisplatin resistance in both cell lines, with resistance factors for 1–4 in the range of 0.5–0.8 and 0.9–2.0 for PC-9 and PC-14 cells, respectively. Complex 4 exhibited approximately 10 times the cytotoxicity of 3. When 3 and 4 were reacted with 2 molar equiv. of 9-ethylguanine (9EtG), they yielded an identical product, [{cis-Pt(NH3)2(9EtG-N7)}2(μ-tetrazolato-N1,N3)]3+, that had N1,N3 platinum coordination through a Pt(II) migration process on the tetrazolate ring. The second-order rate kinetics of these isomers were almost the same as each other and faster than those of 1 and 2. The cytotoxicity of azolato-bridged complexes, except for 3, increases as their kinetic rates in the 9EtG reaction increase.

来源期刊

Metallomics

Metallomics
CiteScore: 7
自引率: 6.9%
年发文量: 77

Metallomics publishes cutting-edge investigations aimed at elucidating the identification, distribution, dynamics, role and impact of metals and metalloids in biological systems. Studies that address the “what, where, when, how and why” of these inorganic elements in cells, tissues, organisms, and various environmental niches are welcome, especially those employing multidisciplinary approaches drawn from the analytical, bioinorganic, medicinal, environmental, biophysical, cell biology, plant biology and chemical biology communities. We are particularly interested in articles that enhance our chemical and/or physical understanding of the molecular mechanisms of metal-dependent life processes, and those that probe the common space between metallomics and other ‘omics approaches to uncover new insights into biological processes. Metallomics seeks to position itself at the forefront of those advances in analytical chemistry destined to clarify the enormous complexity of biological systems. As such, we particularly welcome those papers that outline cutting-edge analytical technologies, e.g., in the development and application of powerful new imaging, spectroscopic and mass spectrometric modalities. Work that describes new insights into metal speciation, trafficking and dynamics in complex systems or as a function of microenvironment are also strongly encouraged. Studies that examine the interconnectivity of metal-dependent processes with systems level responses relevant to organismal health or disease are also strongly encouraged, for example those that probe the effect of chemical exposure on metal homeostasis or the impact of metal-based drugs on cellular processes.

推荐供应商

美国海洋工程
德国Interstuhl Büromöbel GmbH & Co. KG
中国安徽鑫龙化工有限公司
德国Schwedes + Schulze Schüttgutttguttechnik GmbH
中国五洲东方科技发展有限公司
瑞士MSR电子有限公司
德国光学有限公司
中国山东省药学科学院中试厂
中国扬州长华生物科技有限公司
中国扬中沃顿机电有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。