A novel drug–drug cocrystal of tegafur and myricetin: optimized properties of dissolution and tabletability

文献信息

发布日期 2023-10-17
DOI 10.1039/D3CE00794D
影响因子 3.545
作者

Min Zhang, Dai-Lin Gu, Jian-Feng Zhen, Tong-Bu Lu, Xia-Lin Dai, Jia-Mei Chen



摘要

Tegafur (TGF) is a broad-spectrum anti-tumor drug, but it suffers from fast metabolism and consequently poor oral absorption. Myricetin (MYR) is a flavonoid with anti-tumor activity and it has the potential to reverse the TGF resistance, but exhibits poor solubility and low oral bioavailability. In order to simultaneously optimize the physicochemical properties of TGF and MYR, and provide a solution for constructing a fixed-dose combination with better performance, a drug–drug cocrystal (TGF–MYR) was synthesized and comprehensively characterized. The cocrystal effectively improves the dissolution performance of MYR and delays the drug release of TGF, which is beneficial for reducing their solubility difference and improving the formulation compatibility. Moreover, the cocrystal demonstrates significantly improved tabletability compared to pure TGF and is less hygroscopic than pure MYR, as well as having good stability, which indicated there were good prospects for the development of TGF and MYR combined formulations in the future.

来源期刊

CrystEngComm

CrystEngComm
CiteScore: 5.5
自引率: 7.7%
年发文量: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

推荐供应商

奥地利A-TEC工业集团
中国江阴市百汇香料有限公司(江阴市
中国深圳市优品生物科技有限公司黄石分公司
瑞士W.Kolb AG博士
印度印度海湾公司
德国通用化学有限公司
中国天津旅畅科技发展有限公司
中国郑州联创食化工贸有限公司
中国渣打工业有限公司
德国阿尔韦勒·格施夫茨贝里希Exzentschneckenpen
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。