A polymer network architecture provides superior cushioning and lubrication of soft tissue compared to a linear architecture

文献信息

发布日期 2023-10-12
DOI 10.1039/D3BM00753G
影响因子 6.843
作者

Katie J. Sikes, David D. Frisbie, Nikki Phillips, Brad B. Nelson, C. Wayne McIlwraith, Chris E. Kawcak, Laurie R. Goodrich



摘要

We report the relationships between linear vs. network polymer architecture and biomechanical outcomes including lubrication and cushioning when the polymers are applied to the surface of articulating knee cartilage. Aqueous formulations of the bioinspired polymer poly(2-methacryloyloxylethyl phosphorylcholine) (pMPC) exhibit tuneable rheological properties, with network pMPC exhibiting increased elasticity and viscosity compared to linear pMPC. Application of a polymer network, compared to a linear one, to articulating tissue surfaces reduces friction, lessens tissue strain, minimizes wear, and protects tissue – thereby improving overall tissue performance. Administration of the network pMPC to the middle carpal joint of skeletally mature horses elicits a safe response similar to saline as monitored over a 70 day period.

来源期刊

Biomaterials Science

Biomaterials Science
CiteScore: 11.5
自引率: 3.4%
年发文量: 492

Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions. Papers do not necessarily need to report a new biomaterial but should provide novel insight into the biological applications of the biomaterial. Articles that primarily focus on demonstrating novel materials chemistry and bring a molecular picture to bear on a given material’s suitability as a biomaterial are more suited to our companion journal, Journal of Materials Chemistry B. Biomaterials Science publishes primary research and review-type articles in the following areas: molecular design of biomaterials, including translation of emerging chemistries to biomaterials science of cells and materials at the nanoscale and microscale materials as model systems for stem cell and human biology materials for tissue engineering and regenerative medicine (Nano)materials and (nano)systems for therapeutic delivery interactions at the biointerface biologically inspired and biomimetic materials, including bio-inspired self-assembly systems and cell-inspired synthetic tools next-generation biomaterials tools and methods

推荐供应商

德国哈顿Anlagentechnik GmbH
德国埃德尔斯塔尔服务公司
瑞士布赫工业公司
荷兰霍布雷仪器公司
墨西哥Química Vaid,SA de C.V.
中国淄博诺施化工有限公司
德国施拉姆涂料有限公司
中国安徽异取同供生物科技有限公司
中国连云港倍力达新材料有限公司
中国上海开特生物科技有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。