In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites

文献信息

发布日期 2015-04-14
DOI 10.1039/C5NR01932J
影响因子 7.79
作者

Lijia Luo, Yuanwei Pan, Song Luo, Aiguo Wu



摘要

Multifunctional nanoprobes used in magnetic resonance imaging (MRI) and photodynamic therapy (PDT) also have potential applications in diagnosis and visualized therapy of cancers, and hence it is important to investigate the active-targeting ability and in vivo reliability of these nanoprobes. In this work, folic acid (FA)-targeted, photosensitizer (PS)-loaded Fe3O4@NaYF4:Yb/Er (FA-NPs-PS) nanocomposites were synthesized for in vivo T2-weighted MRI and visualized PDT of cancers by modeling MCF-7 tumor-bearing nude mice. By measuring the upconversion luminescence (UCL) and fluorescence emission spectra, the as-prepared FA-NPs-PS nanocomposites showed near-infrared (NIR)-triggered PDT performance due to the production of a singlet oxygen species. Moreover, by tracing PS fluorescence in MCF-7, HeLa cells and in MCF-7 tumors, the FA-targeted nanocomposites demonstrated good targeting ability both in vitro and in vivo. Under the irradiation of a 980 nm laser, the viabilities of MCF-7 and HeLa cells incubated with FA-NPs-PS nanocomposites could decrease to about 18.4% and 30.7%, respectively, and the inhibition of MCF-7 tumors could reach about 94.9%. The transverse MR relaxivity of 63.79 mM−1 s−1 (r2 value) and in vivo MR imaging of MCF-7 tumors indicated an excellent T2-weighted MR performance. This work demonstrated that FA-targeted MRI/PDT nanoprobes are effective for in vivo diagnosis and visualized therapy of breast cancers.

来源期刊

Nanoscale

Nanoscale
CiteScore: 12.1
自引率: 5.2%
年发文量: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

推荐供应商

中国宁波市振雷化工有限公司
中国宜兴市蓝星环保设备有限公司
德国Ludwig Melosch Vertriebs-GmbH & Co.
中国苏州升井环保设备有限公司
中国天津旅畅科技发展有限公司
德国保羅萊賓格 GmbH & Co. KG
中国金华中能自动设备化有限公司
中国镇江市海通化工有限公司
中国深圳德诺龙邦新材料有限公司
中国山东百启生物医药有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。