In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites

文献情報

出版日 2015-04-14
DOI 10.1039/C5NR01932J
インパクトファクター 7.79
著者

Lijia Luo, Yuanwei Pan, Song Luo, Aiguo Wu



要旨

Multifunctional nanoprobes used in magnetic resonance imaging (MRI) and photodynamic therapy (PDT) also have potential applications in diagnosis and visualized therapy of cancers, and hence it is important to investigate the active-targeting ability and in vivo reliability of these nanoprobes. In this work, folic acid (FA)-targeted, photosensitizer (PS)-loaded Fe3O4@NaYF4:Yb/Er (FA-NPs-PS) nanocomposites were synthesized for in vivo T2-weighted MRI and visualized PDT of cancers by modeling MCF-7 tumor-bearing nude mice. By measuring the upconversion luminescence (UCL) and fluorescence emission spectra, the as-prepared FA-NPs-PS nanocomposites showed near-infrared (NIR)-triggered PDT performance due to the production of a singlet oxygen species. Moreover, by tracing PS fluorescence in MCF-7, HeLa cells and in MCF-7 tumors, the FA-targeted nanocomposites demonstrated good targeting ability both in vitro and in vivo. Under the irradiation of a 980 nm laser, the viabilities of MCF-7 and HeLa cells incubated with FA-NPs-PS nanocomposites could decrease to about 18.4% and 30.7%, respectively, and the inhibition of MCF-7 tumors could reach about 94.9%. The transverse MR relaxivity of 63.79 mM−1 s−1 (r2 value) and in vivo MR imaging of MCF-7 tumors indicated an excellent T2-weighted MR performance. This work demonstrated that FA-targeted MRI/PDT nanoprobes are effective for in vivo diagnosis and visualized therapy of breast cancers.

掲載誌

Nanoscale

Nanoscale
CiteScore: 12.1
自己引用率: 5.2%
年間論文数: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

おすすめサプライヤー

ドイツKUKA Systems GmbH
中国武汉荣申化工有限公司
ドイツGB-Chemie GmbH
中国江苏弘惠医药有限公司
中国南京延乔科技有限公司
中国深セン市九牧水处理科技有限公司
ドイツカーンテクニクス GmbH & Co. KG
オーストリアA-TEC工業株式会社
アメリカ合衆国株式会社AAT Bioquest
中国リンケミカル
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。