Zinc iodide(CAS号:10139-47-6)

碘化锌

基本信息

Zinc iodide

CAS号

10139-47-6

分子式

ZnI2

分子量

319.20 g/mol

Quick Actions

基本物理性质

熔点

445 °C (lit.)

沸点

624°C

水溶性

333 g/100 mL

闪点

625°C

溶解度

4500g/l

SMILES

[Zn](I)I

InChI

InChI=1S/2HI.Zn/h2*1H;/q;;+2/p-2

InChIKey

UAYWVJHJZHQCIE-UHFFFAOYSA-L

LogP

1.76890

复杂度

2.8

分类与用途

安全信息

查看安全信息

危险说明

H314

危险类别

8

敏感性

Hygroscopic

同义词与参考文献

英文

  • D04837
  • EpiphaniQ SterileFor Oral INhalation Only
  • EpiphaniQ
  • CS-0015383
  • NSC 39113
  • 762R7A0O0B
  • NSC-39113
  • Zinc iodide, anhydrous, powder, 99.999% trace metals basis
  • Zinc Iodide Powder
  • Diiodozinc
  • Zinc iodide, purum p.a., >=98.0% (AT)
  • DTXSID5064968
  • EINECS 233-396-0
  • Zinc iodide
  • 10139-47-6
  • Zinc diiodide,99%
  • Zinciodide
  • Zinc iodide, >=98%
  • Zinc iodide, anhydrous, beads, -10 mesh, 99.999% trace metals basis
  • MFCD00011299
  • EpiphaniQ Throat
  • AKOS015951018
  • Zinc iodide, >=99.99% trace metals basis
  • J-000381
  • Zinc iodide, ultra dry
  • Zinc iodide (ZnI2)
  • NSC39113
  • UNII-762R7A0O0B
  • ZINC IODIDE
  • Hydriodic acid zinc salt (2:1)
  • Zinc iodine
  • ZnI2
  • ZINC IODIDE PURE
  • zinc iodide, ultra dry
  • ZINCIODIDE,PURIFIED
  • Zinc diiodide
  • Zinc iodide anhydrous
  • Zinc iodide(8CI)
  • Zinc Iodid
  • zinciodide(zni2)
  • ZINC IODIDE, 98+%

中文

  • 碘化锌
  • 碘化鋅
  • 吡咯烷1-苄基-2-氯甲基-盐酸盐
  • 碘化锌,AR
  • 夫西地酸
  • 碘化锌, ULTRA DRY (METALS BASIS)
  • 碘化锌 避光
  • 碘化锌 100G
  • 碘化锌(>98%,BC)
  • 碘化锌, 99.995% (METALS BASIS)
  • 碘化锌, 超干, 99.995% (METALS BASIS)
  • 碘化锌, ULTRA DRY, 99.995% (METALS BASIS)

MDL_Number

MFCD00011299

CAS号

10139-47-6

Merck_Index

14,10140

供应商信息

供应商名称 会员等级 认证状态 主要类别 最小订购量 操作
中国中国 - 四川聚纯材料科技有限公司
中国中国 - 武汉欣中科化工科技有限公司
中国中国 - 上海捷世凯生物科技有限公司
中国中国 - 湖北实兴化工有限公司
中国中国 - 湖北诺纳科技有限公司
中国中国 - 上海沪东锅炉厂
阿联酋阿联酋 - GLOSCO有限公司
中国中国 - 深圳市三力高科技有限公司

相关文献

A new neodymium–phosphine compound for supercapacitors with long-term cycling stability

Xiaoyu Li, Huimin Chen, Chenyu Yang, Yafeng Li

2021-05-06 Communication

DOI: 10.1039/D1CC00650A

Front cover

2021-06-04 Cover

DOI: 10.1039/D1BM90054D

Life cycle assessment of plasma-assisted ethylene production from rich-in-methane gas streams

Evangelos Delikonstantis, Elorri Igos, Michael Augustinus, Enrico Benetto

2020-01-08 Paper

DOI: 10.1039/C9SE00736A

Interfacial engineering of a polymer–MOF composite by in situ vitrification

Rijia Lin, Jingwei Hou, Mengran Li, Zhanke Wang, Lei Ge, Shichun Li, Zhonghua Zhu, Thomas D. Bennett, Vicki Chen

2020-03-09 Communication

DOI: 10.1039/D0CC00664E

Boronic acid liposomes for cellular delivery and content release driven by carbohydrate binding‡

Xiaoyu Zhang, Daiane S. Alves, Jinchao Lou, Shelby D. Hill, Francisco N. Barrera, Michael D. Best

2018-05-21 Communication

DOI: 10.1039/C8CC00820E

An environmentally friendly natural polymer as a universal interfacial modifier for fullerene and non-fullerene polymer solar cells

Xiaojing Wang, Shuwang Yi, Zhicai He, Xinhua Ouyang, Hong-Bin Wu, Weiguo Zhu, Bin Zhang, Yong Cao

2019-12-04 Paper

DOI: 10.1039/C9SE01079C

Heterogeneous toroidal spiral particles for islet encapsulation

Paola Leon Plata, Maryam Zaroudi, Chun-Yin Lee, Colin Foster, Ludwig C. Nitsche, Peter D. Rios, Yong Wang, Jose Oberholzer

2021-02-18 Paper

DOI: 10.1039/D0BM02082F

Inside back cover

2021-06-15 Cover

DOI: 10.1039/D1CC90214H

Co-production of pure hydrogen, carbon dioxide and nitrogen in a 10 kW fixed-bed chemical looping system

Sebastian Bock, Robert Zacharias, Viktor Hacker

2020-01-02 Paper

DOI: 10.1039/C9SE00980A

Vapor-fed photoelectrolysis of water at 0.3 V using gas-diffusion photoanodes of SrTiO3 layers

Hyosuke Mukohara, Hiroki Sato, Chihiro Tateishi, Hiromasa Sato

2019-12-26 Paper

DOI: 10.1039/C9SE01068H