Academic Journal List

Exploring the effect of substitution patterns on the symmetry of hydrogen-bonded supramolecular motifs in functionalized benzosiloxaboroles

IF 3.545Krzysztof Durka, Adam Zuba, Krzysztof Nowicki, Jakub Drapała, Krzysztof Woźniak, Sergiusz Luliński Pub Date2023-10-20 DOI10.1039/D3CE00880K
Crystal structures of a series of 26 functionalized 3-hydroxybenzo[c][1,2,3]siloxaboroles were compared taking into account electronic and steric effects of substituents at the aromatic ring on the hydrogen-bond (HB) motifs involving B–OH groups. The supramolecular assemblies of those compounds show strong variation depending on the number, position and type of substituents. Thus, HB dimers, trimers, tetramers and chains are formed. Most 7-substituted derivatives are isomorphous and crystallize in the I41/a tetragonal space group of symmetry featuring cyclic propeller-like tetramers as a characteristic structural motif. DFT calculations revealed that all observed HB motifs are characterized by similar stabilization energies ranging from −25 to −35 kJ mol−1 per molecule, which rationalizes the strong diversification of HB motifs in the studied structures.

The behaviour of tricyclic fused host systems comprising seven-membered B-rings in mixed pyridines

IF 3.545Benita Barton, Mino R. Caira, Danica B. Trollip, Eric C. Hosten Pub Date2023-10-20 DOI10.1039/D3CE00811H
In this work, the selectivity behaviour of two tricyclic fused host systems with seven-membered B-rings, namely N,N′-bis(5-phenyl-5-dibenzo[a,d]cycloheptenyl)ethylenediamine (H1) and N,N′-bis(5-phenyl-10,11-dihydro-5-dibenzo[a,d]cycloheptenyl)ethylenediamine (H2), was investigated in various mixtures of pyridine (PYR) and the three C-methylated pyridine isomers (2-, 3-, and 4-MP). It was first demonstrated that H1 possessed the ability to enclathrate all four pyridines in the single guest solvent experiments while H2 was only able to form complexes with PYR and 4MP. H2 showed significantly enhanced selectivities compared with H1, consistently preferring PYR, while 2MP was the favoured guest of H1. Selectivity profiles suggested that H1 has the ability to separate mixtures of 2MP/PYR when these contain 40% 2MP (K = 11.8). H2, on the other hand, was shown to have exceptional separatory potential for PYR/2MP and PYR/3MP mixtures even when the amount of PYR in these was as low as 20%. These host compounds, therefore, are able to separate some of these pyridyl mixtures with high efficiency. SCXRD analyses on five of the six complexes prepared here demonstrated that the reason for the preferential behaviours of H1 and H2 for 2MP and PYR, respectively, was the significantly shorter hydrogen bonding interactions present between the host and guest molecules in these complexes. Thermal analyses further showed that these two complexes were more thermally stable than those with the less preferred guest compounds.

MoC@NC cocatalyst-modified ZnIn2S4 with strong 2D/2D hetero-interface interaction for efficient H2 evolution

IF 3.545Lu Chen, Deling Wang, Renkun Huang, Ruowen Liang, Linzhu Zhang, Shaoming Ying, Guiyang Yan Pub Date2023-10-20 DOI10.1039/D3CE00907F
The development of low-cost and high-efficiency non-noble metal cocatalysts is one of the important factors in promoting the separation of photogenerated carriers. In this study, we report a stable and highly active MoC@NC/ZnIn2S4 heterostructure for photocatalytic H2 evolution under visible light. The optimized MoC@NC/ZnIn2S4 composite displays an excellent photocatalytic H2 evolution rate of 45.4 μmol h−1, which was 8.3 times higher than that of ZnIn2S4. Its apparent quantum efficiency reached 51.5% at 420 nm. Moreover, the photocatalyst exhibits excellent stability and recycling capabilities. This remarkable activity can be ascribed to the modification of MoC@NC onto the ZnIn2S4 surface by forming an intimate contact interface, which can suppress the recombination of photogenerated carriers, consequently leading to superior photocatalytic H2 evolution performance. This study indicated that MoC@NC can act as an outstanding cocatalyst for promoting ZnIn2S4 photocatalytic performance.

Anthracene–naphthylacetonitrile fluorescent isomers and Cl/H substituent dependent molecular packing, solid-state fluorescence and mechanofluorochromism

IF 3.545Sasikala Ravi, Prakash Priyadharshini, Subramanian Karthikeyan, Vedichi Madhu, Dohyun Moon, Savarimuthu Philip Anthony Pub Date2023-10-16 DOI10.1039/D3CE00718A
The condensation reaction between naphthylacetonitrile isomers and anthracene aldehyde produced unexpected highly twisted AIEgens (2-(naphthalen-1-yl)-2-(10-oxo-9,10-dihydroanthracen-9-yl)acetonitrile (1) and (Z)-3-(anthracen-9-yl)-2-(naphthalen-2-yl)acrylonitrile (2)). 1 and 2 exhibited strong solid-state fluorescence and mechanical stimuli-induced reversible fluorescence switching. Crystallization of 2 in acidic CHCl3–CH3OH produced Cl substituted anthracene (2-Cl), whereas in CH2Cl2 pure crystals of 2 were produced. Single crystal analysis of 1 revealed a twisted conformation in the middle ring of anthracene due to carbonyl introduction. The carbonyl oxygen and cyano nitrogen are involved in the H-bonding interactions in the crystal lattice. 2 showed slipped stacking between naphthyl units whereas 2-Cl exhibited intermolecular H-bonding between Cl and anthracene hydrogens. 1 exhibited strong solid-state fluorescence (λmax = 541 nm, quantum yield (Φf) = 18.2%), whereas 2 and 2-Cl displayed tunable and relatively low fluorescence efficiency (λmax = 547 (2), 489 nm (2-Cl), Φf = 6.3 (2) and 3.6% (2-Cl)). Computational studies suggested clear intramolecular charge transfer (ICT) in 1 compared to 2 and 2-Cl. Further, 1 and 2-Cl showed mechanical crushing and heating induced reversible fluorescence switching but 2 did not show any fluorescence switching. Powder X-ray diffraction indicated a reversible phase transformation upon crushing and heating that caused reversible fluorescence switching. Hence, the present study provides insight into the subtle structural impact on intermolecular interactions and solid-state fluorescence.

The rich structural phase behaviour of 2,2,2-trifluoroethanol

IF 3.545S. A. Barnett, N. P. Funnell, D. R. Allan Pub Date2023-11-01 DOI10.1039/D3CE00737E
In the fairly modest temperature and pressure regime of 0–2 GPa and 200–295 K, 2,2,2-trifluoroethanol (TFE) exhibits a remarkable degree of polymorphism, with the observation of four ordered phases (forms 1–4) and a cubic plastic phase (form 5). The ordered phases are characterised by hydrogen-bonded chains, with the crystal structures of the three high-pressure forms (forms 2, 3 and 4) based on the same hydrogen-bonded catemeric motif. The structures and relationships between these phases were determined using a combination of high-pressure single-crystal X-ray diffraction, at ambient temperature, and a series of high-pressure neutron powder-diffraction experiments to ∼6 GPa at 295 K, 245 K and 200 K. As well as allowing the determination of the relative compressibilities of the phases, the neutron powder-diffraction studies also provided a preliminary mapping of the surprisingly rich phase diagram of TFE.

Crystal engineering of a new pharmaceutical polymorph of gallic acid monohydrate: a structural comparative study and chemical computational quantum investigations

IF 3.545Nasreddine Ghouari, Rim Benali-Cherif, Radhwane Takouachet, Wahiba Falek, Djallila Missaoui, Ali Rahmouni, El-Eulmi Bendeif Pub Date2023-10-04 DOI10.1039/D3CE00766A
Exploiting new polymorphs of active pharmaceutical ingredients (APIs) has a significant role in the development of new processes for the pharmaceutical industry. Within this context, we report in this work, the synthesis, crystal structure and Hirshfeld surface analyses and complementary computational quantum investigations of the seventh pharmaceutical polymorph of gallic acid monohydrate (GAM-VII). The structural properties have been determined from accurate single crystal data collected at 100 K and reveal that the formation and stability of this new polymorph are associated with the implementation of water molecules within the network of the moderate intermolecular interactions involving carboxyl groups. A detailed and systematic comparison of molecular conformations and packings, hydrogen bonding and intermolecular interactions of the studied polymorph (GAM-VII) was performed with the other six known GAM polymorphs. In this new polymorph, gallic acid molecules (GA) adopt syn COOH orientations leading to the formation of the common centrosymmetric (COOH)2 dimer R22(8). This homo-synthon configuration was only observed in polymorphs I, III and V. Moreover, the analysis and quantification of the contributions of different intermolecular interactions within the supramolecular assemblies were conducted using the Hirshfeld surface (HS) method. This investigation allowed reflection of the offset stacking arrangement of GA molecules and the presence of π⋯π interactions between the benzene rings in the studied polymorph. Based on complementary theoretical calculations, we were able to determine and discuss many fundamental characteristics in the reactivity process of this new polymorph such as dipole moment, ionization, chemical potential, electronegativity and electrophilicity index.

Classification of crystal structures of thiophene-containing organic semiconductors

IF 3.545 Pub Date2023-10-17 DOI10.1039/D3CE00893B
Oligothiophenes and thienoacenes are essential components of organic semiconductors and usually form herringbone structures with dihedral angles of θ = 50–60°. However, when more than three thiophene rings are fused, a stacking structure with θ = 125–130° appears. Since the molecules are located on a lattice point, the lattice constants as well as the intermolecular geometry are obtained by a simple relation of θ and the molecular size. Stacking structures are preferred when the peripheral hydrogen atoms are lost or when polar oxygen atoms are included. Coronene and ovalene with more than a three-ring width form a stacking structure called the γ-structure with θ = 90°, and some molecules form pitched π-stacking with a nonparallel terminal contact, where the intermolecular geometry is obtained by the same relation as the herringbone structures. For the molecular rotation of the γ-structure within the molecular plane, the nonparallel contact is usually formed using the molecular zigzag edge.

Investigation of the preparation, characterization, and whitening activity of co-amorphous glabridin and oxymatrine

IF 3.545Peiyi Liang, Yi Hu, Zhuxian Wang, Yinglin Guo, Hongkai Chen, CuiPing Jiang, Quanfu Zeng, Chunyan Shen, Yufan Wu, Li Liu, Yankui Yi, Hongxia Zhu, Zhijun Yang, Qiang Liu Pub Date2023-09-26 DOI10.1039/D3CE00807J
Glabridin (Gla) is a natural active ingredient extracted from licorice root with good whitening activity. However, its poor solubility limits its further application. Therefore, this study aimed to develop a novel co-amorphous Gla–OMT raw material using oxymatrine (OMT) as a co-former, aiming to improve its physicochemical properties and enhance its whitening activity. Firstly, the formation of co-amorphous Gla–OMT was confirmed by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). Subsequently, FT-IR, NMR, and molecular dynamics simulations were used to investigate the interaction between the co-amorphous Gla–OMT molecules, and solubility experiments and supersaturation dissolution experiments were used to investigate the solubilization of the co-amorphous Gla–OMT. In addition, the in vitro release mechanism of the co-amorphous Gla–OMT was investigated using a Franz diffusion cell and its biosafety and whitening activity were evaluated using cell experiments. In conclusion, the successful preparation of co-amorphous Gla–OMT and the evaluation of its whitening activity in this study have significant implications for guiding the development and application of whitening products in the future.

Construction of 2D heterostructure Fe2P–CoP2/MoOx nanosheets for efficient oxygen evolution reaction

IF 3.545Guan Sheng, Yanghang Fang, Shuangyang Zhao, Ruilin Lyu, Huijun Song, Hui Jin, Hasmaliza Mohamad, Che Azurahanim Che Abudullah, Soorathep Kheawhom, Wei Shao, Ruilian Yin, Ahmad Azmin Mohamad Pub Date2023-10-31 DOI10.1039/D3CE00884C
The oxygen evolution reaction (OER) plays a pivotal role in diverse electrochemical conversion applications, such as water splitting and metal–air batteries. Nevertheless, the formation of several active sites in catalysts made of non-noble metals continues to encounter notable obstacles. To tackle this challenge, a 2D heterostructure catalyst composed of Fe2P–CoP2/MoOx nanosheets was designed. The cobalt molybdate (CoMoO4) nanosheets and their supported FeOOH nanoflakes were in situ transformed into 2D heterostructure Fe2P–CoP2/MoOx nanosheets via a simple hydrothermal and phosphorization process. Note that the 2D MoOx nanosheets significantly enhance the electrochemically active surface area (ECSA), and there is a synergistic effect between cobalt phosphide (CoP2) and iron phosphide (Fe2P) nanoparticles, improving the OER reaction activity. When the electrocatalyst was employed for the OER, the Fe2P–CoP2/MoOx nanosheets exhibit remarkable OER efficiency, reducing overpotentials to as low as 235 mV at a current density of 50 mA cm−2, accompanied by a Tafel slope of 33.32 mV dec−1, along with exceptional enduring stability. The synthesis of the 2D heterostructure Fe2P–CoP2–MoOx nanosheets and their remarkable OER performance represent substantial advancements in developing electrocatalysts that are productive and stable in sustainable energy conversion and storage applications.

Progress in the regulation of pathological crystallization

IF 3.545Zhonghua Li, Yingshuang Meng, Mingyang Yu, Xiaobin Jiang, Gaohong He Pub Date2023-10-12 DOI10.1039/D3CE00192J
When the biological environment deviates from a narrow range of internal balance, some substances are crystallized in body fluids and adhere to the surface of human tissues. It causes inflammation, urinary calculi, blockage of the vessel, and other issues. Also, the encrustation of medical devices makes it complicated to treat the diseases. Thus, it is urgent to improve the understanding of the crystallization thermodynamics and interfacial engineering, which has obvious interdisciplinary characteristics in the fields of chemical engineering, materials science, and medicine. This review summarizes the progress in pathological crystallization related to stone diseases. The mechanisms of pathological mineralization are elucidated through overviewing the efforts in crystallization inhibition. Small molecules, macromolecules, nanoparticles, and polymer surfaces capable of inhibiting pathological mineralization are highlighted. Strategies for designing effective inhibitors and modifying the surface of medical polymers are discussed. The main issues in the research of crystallization inhibitors are summarized, and the prospects for future research on pathological crystallization are put forward.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.