Convolutional neural networks driving thermally enhanced upconversion luminescence for temperature sensing: achieving high accuracy and robustness across a wide temperature range

Literature Information

Publication Date 2023-10-12
DOI 10.1039/D3TC02980H
Impact Factor 7.393
Authors

Wei Xu, Junqi Cui, Fengze Bai, Longjiang Zheng, Chunhai Hu, Zhiguo Zhang, Zhen Sun, Yungang Zhang



Abstract

The accuracy of luminescence thermometry is seriously hindered by thermal-induced luminescence quenching as well as traditional single spectral parameter-based analytical methods, which rely on subjective experience of humans and fail to effectively utilize the spectral features. Herein, thermally intensified luminescence of Cr3+ is successfully achieved in Gd3Ga5O12:Yb3+–Er3+–Cr3+ under 980 nm laser excitation and about 10-fold enhancement is observed at 853 K compared with that at 303 K. The reabsorption of Er3+ luminescence by Cr3+ and the phonon-assisted energy transfer from Er3+ to Cr3+ are responsible for the Cr3+ luminescence, and the latter is the key to the enhanced luminescence, which guarantees good signal-to-noise ratio of emissions at high temperatures. A convolutional neural network (CNN) is subsequently proposed to extract thermal information from the UC (upconversion) emissions, and the maximum error is just about 0.63 K in the temperature range of 303–853 K, along with an average error of only 0.15 K, much better than those obtained with conventional ratiometric approaches. Additionally, luminescence thermometry driven by CNNs can effectively resist the interference of background light and ensure measurement accuracy, further demonstrating the excellent robustness of the proposed thermometry strategy.

Source Journal

Journal of Materials Chemistry C

Journal of Materials Chemistry C
CiteScore: 10.8
Self-citation Rate: 7%
Articles per Year: 1601

Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. The journals have a strong history of publishing quality reports of interest to interdisciplinary communities and providing an efficient and rigorous service through peer review and publication. The journals are led by an international team of Editors-in-Chief and Associate Editors who are all active researchers in their fields. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C. More than one Journal of Materials Chemistry journal may be suitable for certain fields and researchers are encouraged to submit their paper to the journal that they feel best fits for their particular article. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors

Recommended Suppliers

SwitzerlandEmbion Technologies SA
United StatesAAT Bioquest, Inc.
ChinaHubei Xilade New Materials Co., Ltd.
GermanyDURAG GmbH
GermanyInterstuhl Büromöbel GmbH & Co. KG
SwitzerlandApiniLabs AG
GermanyEdelstahlservice Sulz GmbH
SpainSuminco, S.A.
Germany​​Theion GmbH
ChinaBeijing Jinyuan Chemical Group Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.