1T and 2H mixed phase WS2 nanoflakes decorated with quasicrystal nanosheets for NO2 sensors
Literature Information
Sumit Kumar, Mustaque A. Khan, Shashank Shekhar Mishra, Nipun Sharma, Meng Gang, Chandra S. Tiwary, Krishanu Biswas, Mahesh Kumar
The development of new nanomaterials is immensely important for real-world sensing applications to improve the sensitivity, selectivity, and stability of the sensors devices. Herein, we explore the gas sensing properties of two-dimensional quasicrystal (2D QC) nanosheets and WS2 nanoflakes. The decoration of chemically exfoliated QC nanosheets on WS2 nanoflakes significantly enhances their NO2 sensing performance. This approach allows for detecting target gas molecules with exceptionally high sensitivity. For 20 ppm NO2 at 125 °C the ΔR/Ra% value for optimal amount of 2D QC nanosheets decorated WS2 nanoflakes based sensors reaches 52%, which is a 233% higher response than that of bare WS2 nanoflakes sensors. The increased sensitivity of the 2D QC decorated device is due to the increased carrier concentration in WS2 caused by the Fermi level alignment and the high affinity of the QC towards NO2. Furthermore, the density functional theory (DFT) study revealed atomic insight into increasing the gas sensing response due to the presence of transition metals in 2D QCs, drastically enhancing the active sites for NO2 adsorption; therefore, adsorption energy is boosted manifold compared to the WS2 monolayer. This experimental and DFT study of NO2 gas sensors provides detailed insight into gas sensors, and it would be very useful for the design of highly efficient NO2 gas sensors.
Related Literature
IF 6.222
Back coverIF 6.222
Catalogue of self-targeting nano-medical inventions to accelerate clinical trialsIF 6.843
Biomaterials Science Emerging Investigators 2021IF 6.843
Microscopic insights into long-range 1D ordering in a dense semi-disordered molecular overlayerIF 6.222
Effective utilisation of waste cooking oil in a single-cylinder diesel engine using alumina nanoparticlesIF 6.367
Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzerIF 6.367
Mechanism of lignocellulose modification and enzyme disadsorption for complete biomass saccharification to maximize bioethanol yield in rapeseed stalksIF 6.367
Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systemsIF 6.367
Boronic acid liposomes for cellular delivery and content release driven by carbohydrate binding‡IF 6.222
Source Journal
Journal of Materials Chemistry C

Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. The journals have a strong history of publishing quality reports of interest to interdisciplinary communities and providing an efficient and rigorous service through peer review and publication. The journals are led by an international team of Editors-in-Chief and Associate Editors who are all active researchers in their fields. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C. More than one Journal of Materials Chemistry journal may be suitable for certain fields and researchers are encouraged to submit their paper to the journal that they feel best fits for their particular article. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors