Ultra-high dispersion of Ni-based OER catalysts on graphene 3D networks enhances the in situ Fe3+ catalytic activation
Literature Information
María González-Ingelmo, Miriam López García, Freddy E. Oropeza, Patricia Álvarez, Clara Blanco, Ricardo Santamaría, Victoria G. Rocha
Hydrogen as an energy carrier plays a significant role in tackling energy transition challenges. Its production via water electrolysis can be powered by renewable sources of energy and it has been identified as the key to a secure and sustainable energy system. Therefore, the development of efficient and abundant electrocatalysts is very important to realize the required large-scale production. In this context, transition metals have been postulated as promising alternatives to noble metal oxides for water splitting in alkaline media. The efficient incorporation of these metals into supports can improve their distribution and particle size control, making carbon supports an ideal choice due to their high conductivity and electrochemical stability. In this work, reduced graphene oxide 3D aerogels doped with very low concentrations of nickel were prepared by freeze-casting. A fully water-based approach that enables an outstanding integration of nickel hydroxide precursor in a colloidal graphene oxide (GO) aqueous suspension was developed. The as-prepared Ni/graphene 3D networks were extensively characterized showing a low loading of nickel (<10 wt%), and ultradispersed, and nanosized Ni-based particles (15–40 nm). Electrochemical experiments show that Ni/graphene 3D networks exhibit very good catalytic properties towards the oxygen evolution reaction (OER) and outstanding Fe-ion activation from the impurities present in the alkaline (KOH 1 M) electrolyte media. Previous studies have shown that Fe incorporation can increase two-fold the activity of Ni-based electrocatalysts. In contrast, the ultradispersed Ni/graphene hybrid prepared here exhibits an impressive over ten-fold performance increase, highlighting the remarkable influence of Fe in these materials. The high-dispersion and surface availability of Ni species promotes the in situ formation of highly active Ni–Fe oxyhydroxide on the surface of the catalysts.
Related Literature
IF 6.222
Catalogue of self-targeting nano-medical inventions to accelerate clinical trialsIF 6.843
Three-terminal III–V/Si tandem solar cells enabled by a transparent conductive adhesiveIF 6.367
A model-based comparison of Ru and Ni catalysts for the Sabatier reactionIF 6.367
CaMoO4 nanosheet arrays for efficient and durable water oxidation electrocatalysis under alkaline conditionsIF 6.222
An aminophosphonate ester ligand-containing platinum(ii) complex induces potent immunogenic cell death in vitro and elicits effective anti-tumour immune responses in vivoIF 6.222
In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheetsIF 6.222
A new neodymium–phosphine compound for supercapacitors with long-term cycling stabilityIF 6.222
Boronic acid liposomes for cellular delivery and content release driven by carbohydrate binding‡IF 6.222
Direct arylation polycondensation towards water/alcohol-soluble conjugated polymers as the electron transporting layers for organic solar cellsIF 6.222
Source Journal
Journal of Materials Chemistry A

Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. The journals have a strong history of publishing quality reports of interest to interdisciplinary communities and providing an efficient and rigorous service through peer review and publication. The journals are led by an international team of Editors-in-Chief and Associate Editors who are all active researchers in their fields. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C. More than one Journal of Materials Chemistry journal may be suitable for certain fields and researchers are encouraged to submit their paper to the journal that they feel best fits for their particular article. Example topic areas within the scope of Journal of Materials Chemistry A are listed below. This list is neither exhaustive nor exclusive. Artificial photosynthesis Batteries Carbon dioxide conversion Catalysis Fuel cells Gas capture/separation/storage Green/sustainable materials Hydrogen generation Hydrogen storage Photocatalysis Photovoltaics Self-cleaning materials Self-healing materials Sensors Supercapacitors Thermoelectrics Water splitting Water treatment