Catalytic depolymerization of calcium lignosulfonate to high-value oxygenated aromatic compounds over the efficient Fe2O3-La0.8Sr0.2FeO3

Literature Information

Publication Date 2023-10-03
DOI 10.1039/D3SE00912B
Impact Factor 6.367
Authors

Jitong Deng, Jiaren Zhang, Yongjun Zhang, Hongjing Han, Haiying Wang, Huimin Yuan, Yanan Zhang, Yanguang Chen



Abstract

Calcium lignosulfonate (CLS), a by-product of papermaking, contains abundant oxygen-containing functional groups; it has great application value in the production of fine chemicals. Based on the excellent catalytic performance of the conventional hydrothermal depolymerization method, the synergistic depolymerization of calcium lignosulfonate was achieved by Fe2O3-La0.8Sr0.2FeO3 composite oxides. Fe2O3 crystals with small size (30–50 nm) and high crystallinity (96.1%) were obtained via a simple one-step method at pH = 9 and 200 °C for 12 h. Fe2O3-La0.8Sr0.2FeO3 was prepared via the combination of the hydrothermal method and the sol–gel method. The individual calcium lignosulfonate depolymerization exhibited a liquid-phase yield of 45.6% and the selectivity of aryl compounds containing oxygen of 40.3%. When using separate Fe2O3 or La0.8Sr0.2FeO3, the liquid-phase yield reached 50.9 and 48.3%, respectively. The selectivity of aromatic compounds and syringin increased by 4.3 and 4.7% using Fe2O3, while the selectivity of guaiacol was enhanced by 7.0% with La0.8Sr0.2FeO3. Through the synergistic effect of Fe2O3-La0.8Sr0.2FeO3, the liquid-phase yield reached 78.3%, and the selectivity of aromatics, syringin, and guaiacol increased by 5.7, 11.6, and 12.0%. Moreover, the introduction of ethyl acetate in the ethanol–water system accelerated the transference of more phenolic compounds to the liquid phase with higher yield (78.3%) and selectivity of syringin (27.2%), aromatics (6.4%), guaiacol (20.8%), and oxygen-containing aryl compounds (67.1%) at V(ethyl alcohol) : V(water) : V(ethyl acetate) = 65 : 25 : 10. The employment of La0.8Sr0.2FeO3 efficiently avoids the sintering of Fe2O3 and imparts excellent stability through four regeneration cycles; the yield of the liquid-phase product could be maintained at 70.6–76.8% under the coupling effect of adsorbed oxygen and oxygen vacancies.

Source Journal

Sustainable Energy & Fuels

Sustainable Energy & Fuels
CiteScore: 0
Self-citation Rate: 0%
Articles per Year: 0

Recommended Suppliers

ChinaQuzhou Bangcheng Chemical Co., Ltd.
SpainTenysol S.L.
GermanyLinde AG, Linde Engineering Division
ChinaXiangfan Nuor Chemical Industry Co., Ltd.
ChinaAnhui Yiqu Tonggong Biotechnology Co., Ltd.
ChinaShanghai Lingxiao Trade Co., Ltd.
GermanyFrank Gutjahr Chromatographie
GermanyOPTOLOGIC GmbH
GermanyBuchler GmbH
ChinaShanghai Kain Biopharm Technology Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.