Strategies and applications of generating spin polarization in organic semiconductors

Literature Information

Publication Date 2023-06-12
DOI 10.1039/D3NH00101F
Impact Factor 10.989
Authors

Lidan Guo



Abstract

The advent of spintronics has undoubtedly revolutionized data storage, processing, and sensing applications. Organic semiconductors (OSCs), characterized by long spin relaxation times (>μs) and abundant spin-dependent properties, have emerged as promising materials for advanced spintronic applications. To successfully implement spin-related functions in organic spintronic devices, the four fundamental processes of spin generation, transport, manipulation, and detection form the main building blocks and are commonly in demand. Thereinto, the effective generation of spin polarization in OSCs is a precondition, but in practice, this has not been an easy task. In this context, considerable efforts have been made on this topic, covering novel materials systems, spin-dependent theories, and device fabrication technologies. In this review, we underline recent advances in external spin injection and organic property-induced spin polarization, according to the distinction between the sources of spin polarization. We focused mainly on summarizing and discussing both the physical mechanism and representative research on spin generation in OSCs, especially for various spin injection methods, organic magnetic materials, the chiral-induced spin selectivity effect, and the spinterface effect. Finally, the challenges and prospects that allow this topic to continue to be dynamic were outlined.

Source Journal

Nanoscale Horizons

Nanoscale Horizons
CiteScore: 16.3
Self-citation Rate: 3.4%
Articles per Year: 138

Nanoscale Horizons is a leading journal for the publication of exceptionally high-quality, innovative nanoscience and nanotechnology. The journal places an emphasis on original research that demonstrates a new concept or a new way of thinking (a conceptual advance), rather than primarily reporting technological improvements. However, outstanding articles featuring truly breakthrough developments such as record performance alone may also be published in the journal. For work to be published it must be of significant general interest to our community-spanning readership. Topics covered in the journal include, but are not limited to: Synthesis of nanostructured and nanoscale materials Quantum materials 2D materials Layered materials Layered quantum materials Characterisation of functional nanoscale materials and bio-assemblies Properties of nanoscale materials Self-assembly and molecular organisation Complex hybrid nanostructures Nanocomposites, nanoparticles, nanocrystalline materials, and nanoclusters Nanotubes, molecular nanowires and nanocrystals Molecular nanoscience Nanocatalysis Theoretical modelling Single-molecules Plasmonics Nanoelectronics and molecular electronics Nanophotonics Nanochips, nanosensors, nanofluidics and nanofabrication Carbon-based nanoscale materials and devices Biomimetic materials Nanobiotechnology/bionanomaterials Nanomedicine Regulatory approaches and risk assessment

Recommended Suppliers

GermanyPaul Leibinger GmbH & Co. KG
ArgentinaHelm Argentina SRL
ChinaShouguang Shendá Chemical Industry Co., Ltd.
ChinaDongguan Hui Xin Innovative Material Technology Co., Ltd.
ChinaWeihai Zhide Vacuum Technology Co., Ltd.
ChinaShenzhen Chengfeng Intelligent Manufacturing Co., Ltd.
ChinaShandong Gelon Lib Co., Ltd.
ChinaGuangzhou Hengxing Refrigeration Machinery Manufacturing Co., Ltd.
ChinaShandong Xishangxi New Materials Shareholding Co., Ltd. (API)
GermanySL Kunststofftechnik GmbH
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.