A biocompatible pure organic porous nanocage for enhanced photodynamic therapy

Literature Information

Publication Date 2023-09-21
DOI 10.1039/D3MH01263H
Impact Factor 13.266
Authors

Zhong-Hong Zhu, Di Zhang, Jian Chen, Hua-Hong Zou, Zhiqiang Ni, Yutong Yang, Yating Hu, Ruiyuan Liu, Guangxue Feng, Ben Zhong Tang



Abstract

Porphyrin-based photosensitizers have been widely utilized in photodynamic therapy (PDT), but they suffer from deteriorating fluorescence and reactive oxygen species (ROS) due to their close π–π stacking. Herein, a biocompatible pure organic porphyrin nanocage (Py-Cage) with enhanced both type I and type II ROS generation is reported for PDT. The porphyrin skeleton within the Py-Cage is spatially separated by four biphenyls to avoid the close π–π stacking within the nanocage. The Py-Cage showed a large cavity and high porosity with a Brunauer–Emmett–Teller surface area of over 300 m2 g−1, facilitating a close contact between the Py-Cage and oxygen, as well as the fast release of ROS to the surrounding microenvironment. The Py-Cage shows superb ROS generation performance over its precursors and commercial ones such as Chlorin E6 and Rose Bengal. Intriguingly, the cationic π-conjugated Py-Cage also shows promising type I ROS (superoxide and hydroxyl radicals) generation that is more promising for hypoxic tumor treatment. Both in vitro cell and in vivo animal experiments further confirm the excellent antitumor activity of the Py-Cage. As compared to conventional metal coordination approaches to improve PDT efficacy of porphyrin derivatives, the pure organic porous Py-Cage demonstrates excellent biocompatibility, which is further verified in both mice and rats. This work of an organic porous nanocage shall provide a new paradigm for the design of novel, biocompatible and effective photosensitizers for PDT.

Source Journal

Materials Horizons

Materials Horizons
CiteScore: 18.9
Self-citation Rate: 3.3%
Articles per Year: 511

Materials Horizons is a leading journal for the publication of exceptionally high quality, innovative materials science.The journal places an emphasis on original research that demonstrates a new concept or a new way of thinking (a conceptual advance), rather than primarily reporting technological improvements. However, outstanding articles featuring truly breakthrough developments such as record performance of materials alone may also be published in the journal. For work to be published it must be of significant general interest to our community-spanning readership. All articles published in Materials Horizons from 2021 onwards will be indexed in MEDLINE©

Recommended Suppliers

GermanyDinkelberg analytics GmbH
ChinaYanxi Shi Dongyuan Chemical Company Limited
ChinaShenzhen Linchuan Precision Technology Co., Ltd.
GermanyF.H. Papenmeier GmbH & Co. KG
Mitchell Dryers Ltd
SwitzerlandVitaris AG
GermanyRomberger Maschinenfabrik GmbH
ChinaHuzhou Hehua Machinery Co., Ltd.
ChinaDalian Pruet Chemical Technology Co., Ltd.
ChinaHubei Qiangxing Chemical Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.