Fermented cereal-origin gerobiotic cocktails promote healthy longevity in Caenorhabditis elegans
Literature Information
Thiruppathi Govindhan, Kalaiselvi Duraisamy, Jeong Hoon Cho, Shinkichi Tawata, Sundararaj Palanisamy
There is growing interest in dietary interventions, particularly gerobiotics, that directly target aging. Several single-strain gerobiotics have proven to be beneficial in alleviating aging and age-related functional declines across species, but multistrain/multispecies gerobiotics have been proven even more advantageous due to the potential synergy and additive effects among individual isolates. However, there is very limited research on how multistrain/multispecies gerobiotic combinations or cocktails extend healthy longevity. This study comprehensively analyzed probiotic bacteria from traditionally fermented Barnyard millet and compared their efficacy in promoting healthy longevity under various combinations using Caenorhabditis elegans. We have shown that dramatic lifespan extension can be achieved by combining gerobiotics, and the effect was found to be strictly strain-specific. Among the 120 combinations tested, we identified two synergistic gerobiotic combinations, cocktail 55 (combination of B. licheniformis PS70, L. delbrueckii subsp. bulgaricus PS77, and L. amylovorus PS60) and cocktail 112 (combination of L. delbrueckii subsp. bulgaricus PS77, L. lactis PS10, and P. pentosaceus PS91), extending the mean lifespan of C. elegans by up to 46.2% and 53.1%, respectively. Our mechanistic study showed that the life-promoting effect of cocktail 55 relied on the p38 MAPK-SKN-1 pathway, while cocktail 112 acted on multiple signaling pathways, including IIS, β-catenin, and TGF-β pathways, to achieve its impact on the host. Moreover, feeding gerobiotic cocktails improved several healthspan markers reported to decline with age. These observations showed that the gerobiotic cocktails target different subsets of the gene regulatory network controlling the aging process in C. elegans, thereby extending healthy longevity.
Recommended Journals
Related Literature
IF 6.843
An elemental S/P photocatalyst for hydrogen evolution from water under visible to near-infrared light irradiationIF 6.222
Transition metal chemistry in synthetically viable alkaline earth complexes M(Cp)3− (M = Ca, Sr, Ba)IF 6.222
Three-terminal III–V/Si tandem solar cells enabled by a transparent conductive adhesiveIF 6.367
Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline waterIF 6.367
Microscopic insights into long-range 1D ordering in a dense semi-disordered molecular overlayerIF 6.222
Efficient one-pot synthesis of alkyl levulinate from xylose with an integrated dehydration/transfer-hydrogenation/alcoholysis processIF 6.367
Carbon-based photocatalysts for enhanced photocatalytic reduction of CO2 to solar fuelsIF 6.367
Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layerIF 6.367
Inside back coverIF 6.222
Source Journal
Food & Function

Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish novel, cutting-edge, original research focussing on food, its nutrients and their relation to human health and nutrition. We welcome research describing the: Physical properties and structure of food and how this relates to sensory perception and human health Biochemical and physiological actions of food components Interactions between foods, gut microbiota and human physiology Nutritional and biological evaluation of food Clinical and population studies using food or food components Development of biomarkers of food intake and effects on human health We also welcome systematic reviews and meta-analyses of existing studies in the literature, provided these are objective and scientifically valid Food in this context is defined as materials of plant, animal or mineral origin, which are consumed orally (by humans) for pleasure and to sustain growth and vital processes. Examples of research topics that are of interest to be published in Food & Function are: Chemistry and physics of food components and digestion processes Relationship between the physical properties/structure of food and nutrition and human health - for example, impact of food matrix or processing on nutrient release and uptake Molecular properties and physiological effects of food components (nutrients, fibres, essential micronutrients, phytochemicals, bioactives, food substitutes, novel ingredients, allergens, flavours and fragrances) Nutritional and health effects of food including bioavailability and metabolism assessment of food components (nutrients, micronutrients and other microconstituents) Efficacy and mechanisms of food constituents in the body - including biomarkers of intakes, exposure and effects Impacts of foods/food components on gut microorganisms and human physiology - For example impact of fermented foods Role of nutrition and diet in human disease prevention and development Cellular and molecular effects/mechanisms of food/food components image block The following types of research are not within the scope of Food & Function: Research relating to traditional herbal medicines, medicinal plants or active compounds extracted from such plants (materials that are primarily consumed as medicine, i.e. the intended purpose is primarily to treat, cure or prevent a non-deficiency disease) or relating to foods not recognised as human diet contributors Animal nutrition research that is not primarily designed as a model to benefit human nutrition (for example, studies of growth/accretion, heat stress, weaning, ruminant digestion, meat quality, etc.) Treatments administered by non-oral routes such as injection (subcutaneous, intramuscular, intraperitoneal, etc.), dermal/transdermal, rectal, inhalation, nasal, etc. Exceptions are when such routes of administration are used for mechanistic/control purposes in the experimental design Pharmacological/pharmaceutical approaches: Encapsulation, emulsification and/or pure controlled release of compounds or bioactives that do not come directly from edible foods, such as dietary supplements - these are better suited to a pharmaceutical journal In vitro or in vivo studies with poorly defined (insufficiently characterised) extracts and studies without appropriate controls will not be considered Cells studies not considering the metabolism of food components ingested – for example, irrelevant exposure of cells to compounds not present in the body after absorption Manuscripts with only a fully theoretical/bioinformatic approach and without appropriate support from analytical evidence will not be considered for publication Studies focussing solely on food engineering, preservation and sustainable technologies – these can be published in our companion journal Sustainable Food Technology Pure food analysis - these can be published in Analytical Methods