Liberation of carbon monoxide from formic acid mediated by molybdenum oxyanions

Literature Information

Publication Date 2023-10-16
DOI 10.1039/D3DT01983G
Impact Factor 4.39
Authors

Howard Z. Ma, Allan J. Canty, Richard A. J. O'Hair



Abstract

Multistage mass spectrometry experiments, isotope labelling and DFT calculations were used to explore whether selective decarbonylation of formic acid could be mediated by molybdate anions [(MoO3)x(OH)]− (x = 1 and 2) via a formal catalytic cycle involving two steps. In step 1, both molybdate anions undergo gas-phase ion-molecule reactions (IMR) with formic acid to produce the coordinated formates [(MoO3)x(O2CH)]− and H2O. In step 2, both coordinated formates [(MoO3)x(O2CH)]− undergo decarbonylation under collision-induced dissociation (CID) conditions to reform the molybdate anions [(MoO3)x(OH)]− (x = 1 and 2), thus closing a formal catalytic cycle. In the case of [MoO3(O2CH)]− an additional decarboxylation channel also occurs to yield [MoO3(H)]−, which is unreactive towards formic acid. The reaction between [Mo18O3(18OH)]− and formic acid gives rise to [Mo18O3(O2CH)]− highlighting that ligand substitution occurs without 18O/16O exchange between the coordinated 18OH ligand and HC16O2H. The reaction between [(MoO3)x(OD)]− (x = 1 and 2) and DCO2H initially produces [(MoO3)x(OH)]− (x = 1 and 2), indicating that D/H exchange occurs. DFT calculations were carried out to investigate the reaction mechanisms and energetics associated with both steps of the formal catalytic cycle and to better understand the competition between decarbonylation and decarboxylation, which is crucial in developing a selective catalyst. The CO and CO2 loss channels from the monomolybdate anion [MoO3(O2CH)]− have similar barrier heights which is in agreement with experimental results where both fragmentation channels are observed. In contrast, the dimolybdate anion is more selective, since the decarbonylation pathway of [(MoO3)2(O2CH)]− is both kinetically and thermodynamically favoured, which agrees with experimental observations where the CO loss channel is solely observed.

Source Journal

Dalton Transactions

Dalton Transactions
CiteScore: 6.6
Self-citation Rate: 11.4%
Articles per Year: 1868

Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant. Specific guidance for some areas of our scope is given below.

Recommended Suppliers

GermanySystec GmbH & Co. KG
GermanyLabortechnik Tasler GmbH (LTT)
GermanyBureau Veritas Consumer Products Services Germany GmbH
GermanyLECO Instrumente GmbH
ChinaShandong Boxing Xinhuang Food Machinery Industry Co., Ltd.
GermanyWellomer GmbH
AustriaBerndorf Band GmbH
Germanyhps Labor- und Bürositzmöbel OHG
ChinaZhejiang Forth Chemical Technology Co., Ltd.
ChinaLiaoyang Petrochemical One Billion Industrial Company Sales Department
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.