Synthesis and characterization of two metallo-hydrogen-bonded organic frameworks with diverse structures and properties

Literature Information

Publication Date 2023-10-23
DOI 10.1039/D3CE00917C
Impact Factor 3.545
Authors

Yujiang Wang, Guoyuan Yuan, Zhanfeng Ju, Daqiang Yuan



Abstract

Two metallo-hydrogen-bonded organic frameworks (MHOFs) were synthesized by self-assembling a phosphate complex and a macrocyclic ligand with three peripheral carboxylic acids. The two MHOFs have different hydrogen-bond linkages and structures, depending on whether the phosphate participates in the hydrogen bonding. The various hydrogen-bonded networks result in different thermal stabilities, BET surface areas, and water vapor uptake capacities of the MHOFs. MHOF-PO4-2, which has more hydrogen bonds and higher porosity, shows better thermal stability and water vapor adsorption than MHOF-PO4-1. This study demonstrates the possibility of constructing diverse and functional MHOFs based on phosphate complexes.

Source Journal

CrystEngComm

CrystEngComm
CiteScore: 5.5
Self-citation Rate: 7.7%
Articles per Year: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

Recommended Suppliers

GermanyScheidt-Ventilatoren GmbH
Germany​​Theion GmbH
ChinaWuhan Whu Hyvan Co., Ltd.
GermanyEurofins GfA Gesellschaft für Arbeitsplatz und Umweltanalytik mbH
GermanyAngus Chemie GmbH
GermanySITA Messtechnik GmbH
GRYF HB spol. s.r.o
ChinaShanghai ARI Valve Complete Equipment Factory
GermanyARTA Armaturen- und Tankgerätebau GmbH & Co. KG
United StatesEntegris, Inc.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.