Fabrication of 5-R-isophthalic acid-modulated cadmium–organic coordination polymers and selectivity for the efficient detection of multiple analytes
Literature Information
Wen-Ze Li, Yu-Shu Sheng, Xiao-Sa Zhang, Yu Liu, Jing Li, Jian Luan
Excessive emission of inorganic ions and organic molecules can pose a potential threat to human health and the environment. Therefore, finding a way to detect contaminants is crucial. Coordination polymers (CPs) are of great practical importance as effective chemical sensors. Secondary auxiliary ligands with different functional groups were synthesized (by a hydrothermal method) and characterized: {[Cd2(3-dpyp)(1,3-BDC)2]·H2O}n (1), {[Cd(3-dpyp)0.5(1,3-BDC)(H2O)2]·H2O}n (2), {[Cd2(3-dpyp)(5-MIP)2(H2O)3]·2H2O}n (3) and {[Cd(3-dpyp)(5-HIP)]·1.5H2O}n (4), where 3-dpyp = N,N′-di(3-pyridinecarboxamide)-1,3-propane, 1,3-H2BDC = 1,3-benzenedicarboxylic acid, 5-H2MIP = 5-methylisophthalic acid and 5-H2HIP = 5-hydroxyisophthalic acid. Single-crystal X-ray diffraction (SCXRD) analysis showed that the four Cd-CPs exhibited fascinating two/three-dimensional structures. Moreover, Cd-CP-1–4 showed excellent stability in the pH range of 1–14 and in different organic solvents. Powder X-ray diffraction analysis and thermogravimetric analysis indicated that the Cd-CPs possessed high chemical and thermal stabilities. Furthermore, with the aim of “using waste to treat waste”, fluorescence properties showed that Cd-CP-1–4 could be used as multi-response sensors for Fe3+, MnO4− and nitrobenzene with high sensitivity, selectivity and efficiency.
Related Literature
IF 6.843
Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysisIF 6.367
From Douglas fir to renewable H2-enriched syngas via ex situ catalytic pyrolysis over metal nanoparticles–nanocellulose derived carbon catalystsIF 6.367
Transition metal chemistry in synthetically viable alkaline earth complexes M(Cp)3− (M = Ca, Sr, Ba)IF 6.222
Redox responsive Pluronic micelle mediated delivery of functional siRNA: a modular nano-assembly for targeted deliveryIF 6.843
Stabilizing synthetic DNA for long-term data storage with earth alkaline saltsIF 6.222
Cu2ZnSnS4 nanocrystals for microwave thermal and microwave dynamic combination tumor therapyIF 6.222
Three-terminal III–V/Si tandem solar cells enabled by a transparent conductive adhesiveIF 6.367
Co9S8 integrated into nitrogen/sulfur dual-doped carbon nanofibers as an efficient oxygen bifunctional electrocatalyst for Zn–air batteriesIF 6.367
Biomimetic hydrogels designed for cartilage tissue engineeringIF 6.843
Source Journal
CrystEngComm

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.