2-Imidazolidone metal complexes: increased hydrogen bonds and fused ring ligand ratio to be insensitive
Literature Information
Baolong Kuang, Tingwei Wang, Chao Zhang, Han Zhang, Zujia Lu, Zhiming Xie, Meiqi Xu, Zhenxin Yi, Jianguo Zhang
The structural effects of energetic coordination compounds (ECCs) influence their composition and performance. By modifying the coordination sites of the ligand and the type of metal, the structure of ECCs can be adjusted, effectively reconciling the contradiction between the performance and sensitivity. In this study, two types of 0D-structured ECCs Cu(2-IMTO)4(ClO4)2(ECCs-1) and Co(2-IMTO)6(ClO4)2(ECCs-2) were innovatively designed using 2-IMTO as the ligand. Structural analysis revealed that ECCs-1 contains a higher amount of [2-IMTO] with a ligand to [ClO4−] ratio of 2 : 1. The results of physical and chemical property tests indicate that both possess acceptable mechanical sensitivity and good thermal stability. Explosion performance calculations revealed that ECCs-1 exhibits higher detonation velocity and pressure (D = 6552 m s−1 and P = 18.7 GPa). Additionally, the laser ignition test results demonstrate that ECCs-1 can be ignited at a lower laser energy threshold (laser power P = 60 W, delay time τ = 10 ms, and ignition energy = 600 mJ).
Recommended Journals
Related Literature
IF 6.367
MnO/C cubo-polyhedrons derived from α-MnO2@ZIF-8 as anode materials for high-performance lithium-ion batteriesIF 6.367
Life cycle assessment of plasma-assisted ethylene production from rich-in-methane gas streamsIF 6.367
Back coverIF 6.222
Pulsed laser rusted stainless steel: a robust electrode material applied for energy storage and generation applicationsIF 6.367
Front coverIF 6.843
Non-aqueous neptunium and plutonium redox behaviour in THF – access to a rare Np(iii) synthetic precursorIF 6.222
From zinco(ii) arsaketenes to silylene-stabilised zinco arsinidene complexesIF 6.222
Milk exosomes with enhanced mucus penetrability for oral delivery of siRNAIF 6.843
Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA deliveryIF 6.843
Source Journal
CrystEngComm

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.