2-Imidazolidone metal complexes: increased hydrogen bonds and fused ring ligand ratio to be insensitive

Literature Information

Publication Date 2023-10-27
DOI 10.1039/D3CE00891F
Impact Factor 3.545
Authors

Baolong Kuang, Tingwei Wang, Chao Zhang, Han Zhang, Zujia Lu, Zhiming Xie, Meiqi Xu, Zhenxin Yi, Jianguo Zhang



Abstract

The structural effects of energetic coordination compounds (ECCs) influence their composition and performance. By modifying the coordination sites of the ligand and the type of metal, the structure of ECCs can be adjusted, effectively reconciling the contradiction between the performance and sensitivity. In this study, two types of 0D-structured ECCs Cu(2-IMTO)4(ClO4)2(ECCs-1) and Co(2-IMTO)6(ClO4)2(ECCs-2) were innovatively designed using 2-IMTO as the ligand. Structural analysis revealed that ECCs-1 contains a higher amount of [2-IMTO] with a ligand to [ClO4−] ratio of 2 : 1. The results of physical and chemical property tests indicate that both possess acceptable mechanical sensitivity and good thermal stability. Explosion performance calculations revealed that ECCs-1 exhibits higher detonation velocity and pressure (D = 6552 m s−1 and P = 18.7 GPa). Additionally, the laser ignition test results demonstrate that ECCs-1 can be ignited at a lower laser energy threshold (laser power P = 60 W, delay time τ = 10 ms, and ignition energy = 600 mJ).

Source Journal

CrystEngComm

CrystEngComm
CiteScore: 5.5
Self-citation Rate: 7.7%
Articles per Year: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

Recommended Suppliers

ChinaAnhui Xinlong Chemical Industry Co., Ltd.
GermanyVerfahrenstechnik Schweitzer GmbH
GermanyTOPLAB GmbH
GermanyDEKRA EXAM GmbH
United StatesEntegris, Inc.
SwitzerlandDr. W. Kolb AG
ChinaZibo Jujin Chemical Industry Co., Ltd.
ChinaShanghai Kain Biopharm Technology Co., Ltd.
ChinaJIANYING SHI BAHUI FLAVOURING CO., LTD. (JIANYING SHI)
MexicoAlkem de México, S.A. de C.V.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.