Crystal engineering of a new pharmaceutical polymorph of gallic acid monohydrate: a structural comparative study and chemical computational quantum investigations
Literature Information
Nasreddine Ghouari, Rim Benali-Cherif, Radhwane Takouachet, Wahiba Falek, Djallila Missaoui, Ali Rahmouni, El-Eulmi Bendeif
Exploiting new polymorphs of active pharmaceutical ingredients (APIs) has a significant role in the development of new processes for the pharmaceutical industry. Within this context, we report in this work, the synthesis, crystal structure and Hirshfeld surface analyses and complementary computational quantum investigations of the seventh pharmaceutical polymorph of gallic acid monohydrate (GAM-VII). The structural properties have been determined from accurate single crystal data collected at 100 K and reveal that the formation and stability of this new polymorph are associated with the implementation of water molecules within the network of the moderate intermolecular interactions involving carboxyl groups. A detailed and systematic comparison of molecular conformations and packings, hydrogen bonding and intermolecular interactions of the studied polymorph (GAM-VII) was performed with the other six known GAM polymorphs. In this new polymorph, gallic acid molecules (GA) adopt syn COOH orientations leading to the formation of the common centrosymmetric (COOH)2 dimer R22(8). This homo-synthon configuration was only observed in polymorphs I, III and V. Moreover, the analysis and quantification of the contributions of different intermolecular interactions within the supramolecular assemblies were conducted using the Hirshfeld surface (HS) method. This investigation allowed reflection of the offset stacking arrangement of GA molecules and the presence of π⋯π interactions between the benzene rings in the studied polymorph. Based on complementary theoretical calculations, we were able to determine and discuss many fundamental characteristics in the reactivity process of this new polymorph such as dipole moment, ionization, chemical potential, electronegativity and electrophilicity index.
Related Literature
IF 6.222
Developing a novel high performance NaNbO3-based lead-free dielectric capacitor for energy storage applicationsIF 6.367
In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheetsIF 6.222
An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineeringIF 6.843
Front coverIF 6.843
Carbon and carbon composites obtained using deep eutectic solvents and aqueous dilutions thereofIF 6.222
Retraction: Chemical synthesis and antigenic activity of a phosphatidylinositol mannoside epitope from Mycobacterium tuberculosisIF 6.222
Synthesis and hydrogen evolving catalysis of a panchromatic photochemical molecular deviceIF 6.367
Coexisting order and disorder within a common 40-residue amyloid-β fibril structure in Alzheimer's disease brain tissueIF 6.222
Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layerIF 6.367
Source Journal
CrystEngComm

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.