Silver(i) coordination polymers of trans-5-styrylpyrimidine – from structural diversity to solid-state reactivity under sunlight

Literature Information

Publication Date 2023-11-01
DOI 10.1039/D3CE00756A
Impact Factor 3.545
Authors

K. Mohamed Yusuf Baig, Goutam Kumar Kole



Abstract

Reactions of a photostable bidentate ligand trans-5-styrylpyrimidine (5-Spym) with various silver(I) salts resulted in the formation of coordination polymers (CPs) of composition {[Ag(5-Spym)(H2O)](NO3)} (1), {[Ag(5-Spym)(H2O)](BF4)} (2), {[Ag(5-Spym)](SbF6)} (3), {[Ag(5-Spym)(CF3SO3)]} (4), and {[Ag(5-Spym)(CF3CO2)]} (5). The first four CPs (1–4) were found to be one-dimensional (1D) zigzag coordination polymers, where 5-Spym ligands from the neighbouring chains assembled in an infinite parallel arrangement in a head-to-tail fashion. These CPs exhibited [2 + 2] photocycloaddition reaction in the solid state upon exposure to sunlight. On the other hand, the structure of 5 was determined to be a two-dimensional (2D) coordination polymer, and it was found to be photostable. In these series of compounds, the coordination number of Ag(I) varied from 2 to 4, and the coordination geometries were observed to be linear, T-shaped, trigonal, square planar and distorted tetrahedral. By varying the counteranions in the silver(I) salts, various coordination numbers and geometries, and thus structural diversity, and various solid-state photo-reactivities were observed. The scope of mechanochemistry in accessing these CPs is also discussed. Various types of intermolecular interactions observed in this series of compounds have been verified by analyses of their Hirshfeld surfaces.

Source Journal

CrystEngComm

CrystEngComm
CiteScore: 5.5
Self-citation Rate: 7.7%
Articles per Year: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

Recommended Suppliers

ChinaShanghai Youtuo Medicine Technology Co., Ltd.
United Arab EmiratesGLOSCO LIMITED
ChinaShanghai Desheng Pharmaceutical Technology Co., Ltd.
ChinaKaishuo Chemical Sales Co., Ltd
ChinaJiande Yuanguang Plastic Equipment Factory
ChinaKernoxie (Taizhou) Pharmaceutical R&D Co., Ltd.
ChinaNew Chong County Kangning Capsule Machinery Parts Co., Ltd.
ChinaHangzhou Aibe Co., Ltd.
ChinaBaoji Baoyi Titanium Nickel Manufacturing Co., Ltd.
GermanyGlastechnische Werkstatt Dieter Verhees
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.