Highly varied reaction cavities within a single molecular crystal

Literature Information

Publication Date 2023-09-13
DOI 10.1039/D3CE00714F
Impact Factor 3.545
Authors

Michael R. Carr, Matthew Kochert, Wathsala L. I. Waduge, Gregory J. Deye, Kenneth W. Olsen, Jacob W. Ciszek



Abstract

Due to the challenges associated with the systematic study of reaction cavities, the role of reaction cavities on the reactivity of molecular solids has often been built upon presumption. The incomplete understanding has thus led to numerous instances where modeling has proved ineffective. In response, this work systematically assessed five highly varied cavities of tetracene crystals, which could be generated at the different facets of the crystal. The relative kinetics for the cavities were measured via energy dispersive X-ray spectroscopy for the reaction of tetracene with vapors of maleic anhydride, and the effects were understood via molecular dynamic simulations. Steric effects on the reactivity were consistent with the postulated models for molecular cavities, though they required fine levels of structural detail to explain the experimental trends. The stabilization effects ranged from confinement to prepositioning of the reactant to accelerate a reaction, with the latter result not dissimilar to the active sites in enzymes. The measured stabilization effects highlight the need for the field of solid-phase chemistry to incorporate these in models and suggest the potential for a greater degree of control over reactivity in the solid phase than has been previously reported.

Source Journal

CrystEngComm

CrystEngComm
CiteScore: 5.5
Self-citation Rate: 7.7%
Articles per Year: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

Recommended Suppliers

United StatesSila Nanotechnologies Inc.
ChinaJinEn (Guangzhou) New Materials Co., Ltd.
ChinaCeltical Life Science Technology (Beijing) Co., Ltd.
ChinaGuangzhou Xiangmei Chemical Technology Co., Ltd.
ChinaKunshan Lide Precision Machinery Co., Ltd.
ChinaAnhui Xinlong Chemical Industry Co., Ltd.
ChinaJIANYING SHI BAHUI FLAVOURING CO., LTD. (JIANYING SHI)
ChinaZhejiang Weirong Pharmaceutical Chemical Co., Ltd.
ChinaHangzhou Hangyang Small Compressed Air Machine Co., Ltd.
GermanyHAW Linings GmbH
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.