Dichlorosubstitution as a steering tool in hydrogen bonded cocrystals: the nature of rigid and flexible coformers in crystal structures
Literature Information
Ritesh Dubey, Sandeep Singh
Dichlorosubstitution is known to steer crystal packings of planar aromatic compounds into short-axis β-structures. We employed the combinatorial matrix analogy of six isomeric dichlorophenols with two distinct coformers to identify the critical structural determinants, like (a) the O–H⋯N synthon and its variations; (b) weaker, subsidiary non-covalent interactions (C–H⋯Cl, Cl⋯Cl, Cl⋯π, and Cl⋯O) in the context of isolable crystal packings. We synthesized and structurally characterized 13 co-crystals obtained from two coformers, planar 1,10-phenanthroline (110phe) and flexible 4,4′-bipyridine (44bp). Systematic studies of these co-crystals demonstrated the utilities of dichlorosubstitution at molecular scaffolds to tune crystal packings, to explore chiral packing in achiral substrates and to apply geometrical complementarities (planar vs. flexible) in exploring uncharted crystallization routes of the given binary systems.
Related Literature
IF 6.843
Tessellation strategy for the interfacial synthesis of an anthracene-based 2D polymer via [4+4]-photocycloadditionIF 6.222
Near infrared light activation of an injectable whole-cell cancer vaccine for cancer immunoprophylaxis and immunotherapyIF 6.843
Front coverIF 6.222
Catalytic depolymerization of alkali lignin in ionic liquids on Pt-supported La2O3–SO42−/ZrO2 catalystsIF 6.367
Front coverIF 6.843
Performance of electrode-supported silica membrane separators in lithium-ion batteriesIF 6.367
Ultra-thin NiFeSe nanosheets as a highly efficient bifunctional electrocatalyst for overall water splittingIF 6.367
Recent developments in carbon nitride based films for photoelectrochemical water splittingIF 6.367
An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineeringIF 6.843
Source Journal
CrystEngComm

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.