In the pursuit of a ‘disappearing’ anhydrous phase of the antipyrine–dipicolinic acid (ANT–DPA) co-crystal: explained through relative stability and charge density analyses

Literature Information

Publication Date 2023-10-31
DOI 10.1039/D3CE00591G
Impact Factor 3.545
Authors

Sehrish Akram, Arshad Mehmood, Sajida Noureen, Maqsood Ahmed



Abstract

The relative stability and growth of the two new cocrystal forms of antipyrine–dipicolinic acid, one of which is the ‘disappearing’ one, were systematically examined. The Cambridge Structural Database was extensively mined to find the hydrogen bonding motifs amenable to crystal engineering. The cocrystallization trials resulted in two cocrystal phases in the same vial. The hydrated phase (ANT–DPA-w) is predominant, stable and easily reproducible, while the anhydrous phase (ANT–DPA) is the ‘disappearing’ one which could only be reproduced under anhydrous conditions. The stability of both the cocrystals was examined within the framework of symmetry-adapted perturbation theory (SAPT), non-covalent interactions (NCIs), detailed topological analysis of the electron density and binding energy analyses which provide useful insight into the role of water molecules in the stability of the structure. A thermogravimetric analysis (TGA) was used to identify the dehydration temperature. In light of the above information, the anhydrous phase (ANT–DPA) was regained via melting and re-crystallization by providing an anhydrous environment to the hydrated phase (ANT–DPA-w).

Source Journal

CrystEngComm

CrystEngComm
CiteScore: 5.5
Self-citation Rate: 7.7%
Articles per Year: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

Recommended Suppliers

GermanyJüke Systemtechnik GmbH
SpainVAMEIN DE ESPAÑA, S.A.
GermanyPMR Tech UG (haftungsbeschränkt)
ChinaGaoyou City Bright Chemical Factory
GermanySiemens Building Technologies GmbH & Co. oHG
ChinaDezhou Jiatai Chemical Technology Co., Ltd.
GermanyARTA Armaturen- und Tankgerätebau GmbH & Co. KG
ChinaZhengzhou Lifeng Chemical Co., Ltd.
ChinaJinan Xinliye Chemical Industry Co., Ltd.
ChinaShenzhen Sili High-Tech Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.