On standardised moments of force distribution in simple liquids

Literature Information

Publication Date 2022-01-27
DOI 10.1039/D1CP04056A
Impact Factor 3.676
Authors

Jonathan Utterson, Radek Erban



Abstract

The force distribution of a tagged atom in a Lennard-Jones fluid in the canonical ensemble is studied with a focus on its dependence on inherent physical parameters: number density (n) and temperature (T). Utilising structural information from molecular dynamics simulations of the Lennard-Jones fluid, explicit analytical expressions for the dependence of standardised force moments on n and T are derived. Leading order behaviour of standardised moments of the force distribution are obtained in the limiting cases of small density (n → 0) and low temperature (T → 0), while the variations in the standardised moments are probed for general n and T using molecular dynamics simulations. Clustering effects are seen in molecular dynamics simulations and their effect on these standardised moments is discussed.

Source Journal

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics
CiteScore: 5.5
Self-citation Rate: 10.3%
Articles per Year: 3036

Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.

Recommended Suppliers

ChinaZhejiang Chetou Pharmaceutical Co., Ltd.
GermanyBattery Sphere GmbH
GermanyInfrareal Holding GmbH & Co. KG
GermanyVerfahrenstechnik Schweitzer GmbH
United KingdomElite Thermal Systems Ltd
GermanyWellomer GmbH
ChinaLai County Laiyu Chemical Industry Co., Ltd.
SwitzerlandEmile Egger & Cie SA
GermanyGestra AG
ChinaHubei Xilade New Materials Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.