Heterogeneous toroidal spiral particles for islet encapsulation
Literature Information
Paola Leon Plata, Maryam Zaroudi, Chun-Yin Lee, Colin Foster, Ludwig C. Nitsche, Peter D. Rios, Yong Wang, Jose Oberholzer
Transplantable cell encapsulation systems present a promising approach to deliver a therapeutic solution from hormone-producing cells for the treatment of endocrine diseases like type 1 diabetes. However, the development of a broadly effective and safe transplantation system has been challenging. While some current micro-sized capsules have been optimized for adequate nutrient and metabolic transport, they lack the robustness and retrievability for the clinical safety translation that macro-devices may offer. An existing challenge to be addressed in the current macro-devices is their configuration which may lead to unsatisfactory mass transfer. Here, we design and characterize a millimeter-size particle system of poly-ethylene glycol (PEG) featuring internal toroidal spiral channels, called toroidal spiral particles (TSPs). The characteristic internal structure of the TSPs allows for large encapsulation capacity and large surface area available to all the encapsulated cell mass for effective molecular diffusion. The polymeric matrix renders the particle flexible yet robust for safe transplantation and retrieval. We demonstrate the feasibility of fabricating these particles with various polymer compositions, while optimizing their mechanical properties as well as glucose and insulin permeability. Encapsulation of islets of Langerhans is achieved with high loading capacity (∼160 IEQ per TSP) and excellent cell viability. TSP-encapsulated islets showed similar glucose-stimulated insulin secretion to the naked islets. Preliminary biocompatibility of the TSPs on naïve C57BL/6 mice shows minimal inflammatory response after 4-week transplantation into the intraperitoneal (IP) space. Long-term therapeutic efficacy of encapsulated islets needs to be confirmed in diabetic rodent models in the future, while determining minimal mass required to reverse diabetes. However, we believe from the in vitro favorable results and the TSPs’ unique design that TSPs may provide a safe, effective method to transplant and retrieve therapeutic cells for type 1 diabetes treatment and may also be applicable for other cell therapies.
Related Literature
IF 6.367
The limits to biocatalysis: pushing the envelopeIF 6.222
An improved fluorescent protein-based expression reporter system that utilizes bioluminescence resonance energy transfer and peptide-assisted complementationIF 6.222
In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheetsIF 6.222
Stabilizing synthetic DNA for long-term data storage with earth alkaline saltsIF 6.222
Synthesis and optical and electronic properties of one-dimensional sulfoxonium-based hybrid metal halide (CH3)3SOPbI3IF 6.222
A new neodymium–phosphine compound for supercapacitors with long-term cycling stabilityIF 6.222
Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunitiesIF 6.843
Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layerIF 6.367
Developing a novel high performance NaNbO3-based lead-free dielectric capacitor for energy storage applicationsIF 6.367
Source Journal
Biomaterials Science

Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions. Papers do not necessarily need to report a new biomaterial but should provide novel insight into the biological applications of the biomaterial. Articles that primarily focus on demonstrating novel materials chemistry and bring a molecular picture to bear on a given material’s suitability as a biomaterial are more suited to our companion journal, Journal of Materials Chemistry B. Biomaterials Science publishes primary research and review-type articles in the following areas: molecular design of biomaterials, including translation of emerging chemistries to biomaterials science of cells and materials at the nanoscale and microscale materials as model systems for stem cell and human biology materials for tissue engineering and regenerative medicine (Nano)materials and (nano)systems for therapeutic delivery interactions at the biointerface biologically inspired and biomimetic materials, including bio-inspired self-assembly systems and cell-inspired synthetic tools next-generation biomaterials tools and methods