Efficient one-pot synthesis of alkyl levulinate from xylose with an integrated dehydration/transfer-hydrogenation/alcoholysis process
Literature Information
Mengmeng Wang, Xueying Gao, Liang He, Junhua Zhang
An integrated catalytic protocol involving dehydration, transfer-hydrogenation and alcoholysis towards one-pot conversion of xylose to alkyl levulinate was invented using a combination of Zr(20)-MCM-41 and H3O40PW12 catalysts. Secondary alcohols like 2-propanol and 2-butanol as the reaction medium exhibit equally superior hydrogen donating capability, but the dehydration step of xylose in 2-butanol is preferred probably due to its stronger hydrophobicity. A good alkyl levulinate yield of 53% can be achieved under optimized conditions. The spent dual catalysts can be effectively recovered and they exhibit good reusability after thermal regeneration of Zr(20)-MCM-41. Research on the catalytic mechanism shows that well-dispersed ZrO2 supported on MCM-41 is responsible for the catalytic transfer hydrogenation step of furfural to furfuryl alcohol. Proper tuning of the Lewis and Brønsted acidities can efficiently promote the acid-driven reaction steps of xylose conversion and simultaneously inhibit the alkyl levulinate-to-γ-valerolactone side reaction. The sustainability of this conversion is greatly improved by process intensification based on the new catalytic strategy and mild reaction conditions.
Related Literature
IF 6.222
Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon clothIF 6.367
A model-based comparison of Ru and Ni catalysts for the Sabatier reactionIF 6.367
An improved fluorescent protein-based expression reporter system that utilizes bioluminescence resonance energy transfer and peptide-assisted complementationIF 6.222
The dilemma between acid and base catalysis in the synthesis of benzimidazole from o-phenylenediamine and carbon dioxide‡IF 6.222
Effective utilisation of waste cooking oil in a single-cylinder diesel engine using alumina nanoparticlesIF 6.367
Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzerIF 6.367
An elemental S/P photocatalyst for hydrogen evolution from water under visible to near-infrared light irradiationIF 6.222
Milk exosomes with enhanced mucus penetrability for oral delivery of siRNAIF 6.843
Front coverIF 6.222