Linking capacity loss and retention of nickel hexacyanoferrate to a two-site intercalation mechanism for aqueous Mg2+ and Ca2+ ions

Literature Information

Publication Date 2019-08-28
DOI 10.1039/C9CP04115J
Impact Factor 3.676
Authors

Aniruddh Shrivastava, Sizhe Liu



Abstract

Prussian blue analogues (PBAs) are promising cation intercalation materials for electrochemical desalination and energy storage applications. Here, we investigate the mechanism of capacity fade and degradation of nickel hexacyanoferrate (NiHCFe) during galvanostatic cycling in aqueous electrolytes that are rich in either Mg2+ or Ca2+. We combine experimental characterization, first principles electronic structure calculations, statistical mechanics and lattice-percolation modeling of electron transfer to elucidate the mechanisms responsible for the degradation of NiHCFe and its partial retention of capacity. Electrochemical characterization of porous NiHCFe electrodes suggests a two-site intercalation mechanism, while spectroscopy reveals the presence of Ni2+ and Fe(CN)63− ions in the electrolyte post cycling in Mg2+(aq). Using simple coprecipitation reactions, we show that Mg2+ and Ni2+ can coexist in the lattice framework, forming stable PBAs. Galvanostatic cycling of these PBAs shows that the presence of Mg2+ in the lattice framework results in the dissolution of Mg1.5FeIII(CN)6 in water during oxidation. We propose that Mg2+ can partially substitute Ni2+ ions in the lattice framework during galvanostatic cycling, displacing the substituted Ni2+ ions into interstitial sites. Based on differential capacitance analysis we show that Mg2+ intercalates into interstitial sites at ∼0.45 V vs. Ag/AgCl and it displaces Ni2+ in the lattice framework at ∼0.05 V vs. Ag/AgCl. Substitution of Ni2+ leads to Fe(CN)63− and Ni2+ ions being removed into the electrolyte during oxidation. Using first principles density functional theory (DFT) calculations combined with a statistical mechanics model, we verify the thermodynamic feasibility of the proposed reaction mechanism and predict the fraction of Ni2+ ions being substituted by Mg2+ during intercalation. Further, analysis of the electron density distribution and local density of states indicates that Mg2+ ions can act as insulating defects in the lattice framework that render certain Fe ions electrically inactive and likely contribute to capacity fade along with dissolution of Fe(CN)63−.

Source Journal

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics
CiteScore: 5.5
Self-citation Rate: 10.3%
Articles per Year: 3036

Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.

Recommended Suppliers

SwitzerlandCHEMGO Organica AG
ChinaShandong Hezhan Chemical Co., Ltd.
ColombiaGases Industriales De Colombia SA (CRYOGAS)
ChinaKaishuo Chemical Sales Co., Ltd
ChinaWuhan Shunyuansheng Biomedical Technology Co., Ltd.
ChinaZibo Jujin Chemical Industry Co., Ltd.
ChinaShanghai Biosundrug Co., Ltd
GermanyGerman Safety - Produkte für die Arbeitswelt
ChinaTaixing Chemical Co., Ltd.
GermanyBÜSCH Technology GmbH & Co. KG
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.