On the lack of evolutionary continuity between prebiotic peptides and extant enzymes

Literature Information

Publication Date 2016-04-28
DOI 10.1039/C6CP00793G
Impact Factor 3.676
Authors

Luciana Raggi, Jeffrey L. Bada, Antonio Lazcano



Abstract

The significance of experiments that claim to simulate the properties of prebiotic small peptides and polypeptides as models of the polymers that may have preceded proteins is critically addressed. As discussed here, most of these experiments are based only on a small number of a larger set of amino acids that may have been present in the prebiotic environment, supported by both experimental simulations and the repertoire of organic compounds reported in carbonaceous chondrites. Model experiments with small peptides may offer some insights into the processes that contributed to generate the chemical environment leading to the emergence of informational oligomers, but not to the origin of proteins. The large body of circumstantial evidence indicating that catalytic RNA played a key role in the origin of protein synthesis during the early stages of cellular evolution implies that the emergence of the genetic code and of protein biosynthesis are no longer synonymous with the origin of life. Hence, reports on the abiotic synthesis of small catalytic peptides under potential prebiotic conditions do not provide information on the origin of triplet encoded protein biosynthesis, but in some cases may serve as models to understand the properties of the earliest proteins.

Source Journal

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics
CiteScore: 5.5
Self-citation Rate: 10.3%
Articles per Year: 3036

Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.

Recommended Suppliers

ChinaXi'an Huilin Biotechnology Co., Ltd.
ChinaJiangsu Jinwo New Materials Co., Ltd.
Germanytesa Werk Offenburg GmbH
ChinaShenzhen FangcunDa Technology Co., Ltd.
ChinaWuhan Rongshen Chemical Industry Co., Ltd
ChinaZibo Jujin Chemical Industry Co., Ltd.
GermanyKUKA Systems GmbH
ChinaAnhui Nanfang Chemical Pump Co., Ltd.
FranceCristal France SAS
ChinaJinan Xinliye Chemical Industry Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.