Secondary structure of proteins analyzed ex vivo in vascular wall in diabetic animals using FT-IR spectroscopy

Literature Information

Publication Date 2013-09-23
DOI 10.1039/C3AN00455D
Impact Factor 4.616
Authors

Katarzyna Majzner, Andrzej Fedorowicz



Abstract

In recent years many methods for ex vivo tissue analysis or diagnosis of diseases have been applied, including infrared absorption spectroscopy. Fourier-transform infrared (FT-IR) absorption microspectroscopy allows the simultaneous monitoring of the content of various chemical compounds in tissues with both high selectivity and resolution. Imaging of tissue samples in very short time can be performed using a spectrometer equipped with a Focal Plane Array (FPA) detector. Additionally, a detection of minor components or subtle changes associated with the functional status of a tissue sample is possible when advanced methods of data analysis, such as chemometric techniques, are applied. Monitoring of secondary structures of proteins has already proved to be useful in the analysis of animal tissues in disease states. The aim of this work was to build a mathematical model based on FT-IR measurements for the prediction of alterations in the content of secondary structures of proteins analyzed by FT-IR in the vascular wall of diabetic animals. For that purpose a spectral database of proteins of known crystallography and secondary structures was assembled. Thirty-seven proteins were measured by means of two FT-IR techniques: transflection and Attenuated Total Reflectance (ATR). The obtained model was tested on cross-sections of rat tail, for which the content of proteins and their secondary structures was well characterized. Then, the model was applied for the detection of possible alterations in the secondary structures of proteins in the vascular wall of diabetic rats and mice. The obtained results suggest a prominent increase in E- and S-structures and a decrease in the content of H-structures in the vascular wall from diabetic mice and rats. FT-IR-based studies of secondary structures of proteins may be a novel approach to study complex processes ongoing in the vascular wall. The obtained results are satisfactory; however, the existing limitations of the method are also discussed.

Source Journal

Analyst

Analyst
CiteScore: 7.8
Self-citation Rate: 5.6%
Articles per Year: 653

Analyst publishes analytical and bioanalytical research that reports premier fundamental discoveries and inventions, and the applications of those discoveries, unconfined by traditional discipline barriers.

Recommended Suppliers

ChinaXi'an Jiátían Biotechnology Co., Ltd.
ChinaSuzhou Kehu Biotechnology Co., Ltd.
ChinaYangzhou Pharmaceutical Co., Ltd.
ChinaXinxiang City Boxiang Purification Equipment Co., Ltd
GermanyPlümat Maschinenbau Vertriebs GmbH
ItalyCad-oil S.r.l.
GermanyCyclics Europe GmbH
GermanyIndustriepark Premnitz
ChinaGoly Chemical Co., Ltd.
ChinaNingbo Longxin Precision (Dexin Dyestuff) Chemical Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.