Square planar coordinate iron oxides

Literature Information

Publication Date 2011-11-16
DOI 10.1039/C1CS15218A
Impact Factor 54.564
Authors

Cédric Tassel



Abstract

We will provide an overview of the synthesis, structures, chemical and physical properties of novel iron oxides bearing FeO4 square planar coordination, such as SrFeO2 and Sr3Fe2O5. The preparation of these materials relies on topotactic low-temperature reduction using metal hydrides. For instance, a simple 3D perovskite structure SrFeO3 converts to a 2D structure SrFeO2viaSrFeO2.5. SrFeO2 shows a remarkable stability against temperature and chemical substitution (for both A- and B-sites) and also tolerates distortions of square planes toward tetrahedra to adapt different A sites. Such structural stability and flexibility arise from strong covalent interactions not only through the in-plane Fe–O–Fe superexchange interactions but also through the out-of-plane Fe–Fe direct exchange interactions, and explains why SrFeO2 exhibits magnetic order far beyond room temperature. The application of pressure on SrFeO2 and Sr3Fe2O5 further enhances the Fe–Fe direct exchange interactions and eventually induces striking transitions at around 34 GPa: spin-state transition from S = 2 to S = 1, insulator-to-metal transition, and antiferro-to-ferromagnetic transition. The high mobility of oxide ions at relatively low temperatures, during the reduction and reoxidation reaction process would offer an important challenge to tailor and design new solid oxide fuel cells/membranes toward lowering working temperatures.

Source Journal

Chemical Society Reviews

Chemical Society Reviews
CiteScore: 80.8
Self-citation Rate: 1.2%
Articles per Year: 250

Chem Soc Rev publishes review articles covering important topics at the forefront of the chemical sciences. Reviews should be of the very highest quality and international impact. We particularly encourage international and multidisciplinary collaborations among our authors. Our scope covers the breadth of the chemical sciences, including interdisciplinary topics where the article has a basis in chemistry. Topics include: Analytical chemistry Biomaterials chemistry Bioorganic/medicinal chemistry Catalysis Chemical Biology Coordination Chemistry Crystal Engineering Energy Sustainable chemistry Green chemistry Inorganic chemistry Inorganic materials Main group chemistry Nanoscience Organic chemistry Organic materials Organometallics Physical chemistry Supramolecular chemistry Synthetic methodology Theoretical and computational chemistry

Recommended Suppliers

ChinaShaanxi Zhiqi Biotechnology Co., Ltd.
ChinaShouguang Shendá Chemical Industry Co., Ltd.
ChinaYangzhou Changhu Biotechnology Co., Ltd.
GermanyKUKA Systems GmbH
ChinaShanghai Hudong Boiler Factory
GermanyARTES Valve & Service GmbH
ChinaXinghuo Biological Technology Co., Ltd.
GermanyABB AG
ChinaShanxi Xinrui Biotechnology Co., Ltd
GermanyFriedrich Theysohn GmbH
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.