Independent metal-binding features of recombinant metallothioneins convergently draw a step gradation between Zn- and Cu-thioneins

Literature Information

Publication Date 2009-03-24
DOI 10.1039/B904953C
Impact Factor 0
Authors

Roger Bofill, Mercè Capdevila, Sílvia Atrian



Abstract

Data on the metal-binding behaviour of circa 20 recombinant metallothioneins (MTs) from evolutionary divergent organisms, gathered after years of systematic research, are here comprehensively analyzed. The consideration of four independent in vivo and in vitro metal-binding features reveals a gradation of the metal-binding character of the MTs considered that significantly coincides in a robust new classification: a stepwise gradation between Zn- and Cu-thioneins. The intermediate positions in this list are occupied by a group of polyvalent MTs, exhibiting a merging Zn-/Cu-thionein character that would suit general metal handling purposes. In contrast, the extreme positions are respectively occupied by those MTs that would have evolved to fulfil specialized Zn- or Cu-related physiological roles. Overall, the analyzed trends allow the proposal of a chemically- and biologically-sound new reflection on MT classification criteria.

Source Journal

Metallomics

Metallomics
CiteScore: 7
Self-citation Rate: 6.9%
Articles per Year: 77

Metallomics publishes cutting-edge investigations aimed at elucidating the identification, distribution, dynamics, role and impact of metals and metalloids in biological systems. Studies that address the “what, where, when, how and why” of these inorganic elements in cells, tissues, organisms, and various environmental niches are welcome, especially those employing multidisciplinary approaches drawn from the analytical, bioinorganic, medicinal, environmental, biophysical, cell biology, plant biology and chemical biology communities. We are particularly interested in articles that enhance our chemical and/or physical understanding of the molecular mechanisms of metal-dependent life processes, and those that probe the common space between metallomics and other ‘omics approaches to uncover new insights into biological processes. Metallomics seeks to position itself at the forefront of those advances in analytical chemistry destined to clarify the enormous complexity of biological systems. As such, we particularly welcome those papers that outline cutting-edge analytical technologies, e.g., in the development and application of powerful new imaging, spectroscopic and mass spectrometric modalities. Work that describes new insights into metal speciation, trafficking and dynamics in complex systems or as a function of microenvironment are also strongly encouraged. Studies that examine the interconnectivity of metal-dependent processes with systems level responses relevant to organismal health or disease are also strongly encouraged, for example those that probe the effect of chemical exposure on metal homeostasis or the impact of metal-based drugs on cellular processes.

Recommended Suppliers

GermanyHAW Linings GmbH
ChinaSuzhou Xinghu Fine Chemical Factory
AustriaBerndorf Band GmbH
ChinaShanghai Ruiying Chemical Co., Ltd.
ChileINQUISA S.A.
ChinaZhejiang Weirong Pharmaceutical Chemical Co., Ltd.
GermanyTKT-Kunststoff-Technik GmbH
ItalyVariati & Co. S.p.a.
ChinaYangzhou Changhu Biotechnology Co., Ltd.
ChinaBeijing Jinyuan Chemical Group Co., Ltd.
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.