Zinc and tetrathiomolybdate for the treatment of Wilson’s disease and the potential efficacy of anticopper therapy in a wide variety of diseases

Literature Information

Publication Date 2009-04-16
DOI 10.1039/B901614G
Impact Factor 0
Authors



Abstract

Wilson’s disease, an autosomal recessive disease of copper accumulation and copper toxicity primarily in the liver and brain, has been the engine that has driven the development of anticopper drugs. Here we first briefly review Wilson’s disease, then review the four anticopper drugs used to treat Wilson’s disease. We then discuss the results of therapy with anticopper drugs in Wilson’s disease, with special emphasis on the newer and better drugs, zinc and tetrathiomolybdate. We then discuss new areas of anticopper therapy, lowering copper availability with tetrathiomolybdate as a therapy in fibrotic, inflammatory, and autoimmune disorders. Many of the cytokines which promote these disorders are copper dependent, and lowering copper availability lessens the activity of these cytokines, favorably influencing a variety of disease processes. Copper in the blood can be thought of as in two pools. One pool is covalently bound in ceruloplasmin, a protein containing six coppers, synthesized by the liver and secreted into the blood. Ceruloplasmin copper accounts for almost 85 to 90% of the blood copper in normal people. This copper is tightly bound and not readily available for cellular uptake and copper toxicity. The other 10–15% of copper is more loosely bound to albumin and other small molecules in the blood, and is readily and freely available to cells and available to cause copper toxicity, if this pool of copper is increased. We call this latter pool of copper “free” copper because of its more ready availability. However, it should be understood that it is not completely free, always being bound to albumin and other molecules. It is this pool of free copper that is greatly expanded in untreated Wilson’s patients undergoing copper toxicity.

Source Journal

Metallomics

Metallomics
CiteScore: 7
Self-citation Rate: 6.9%
Articles per Year: 77

Metallomics publishes cutting-edge investigations aimed at elucidating the identification, distribution, dynamics, role and impact of metals and metalloids in biological systems. Studies that address the “what, where, when, how and why” of these inorganic elements in cells, tissues, organisms, and various environmental niches are welcome, especially those employing multidisciplinary approaches drawn from the analytical, bioinorganic, medicinal, environmental, biophysical, cell biology, plant biology and chemical biology communities. We are particularly interested in articles that enhance our chemical and/or physical understanding of the molecular mechanisms of metal-dependent life processes, and those that probe the common space between metallomics and other ‘omics approaches to uncover new insights into biological processes. Metallomics seeks to position itself at the forefront of those advances in analytical chemistry destined to clarify the enormous complexity of biological systems. As such, we particularly welcome those papers that outline cutting-edge analytical technologies, e.g., in the development and application of powerful new imaging, spectroscopic and mass spectrometric modalities. Work that describes new insights into metal speciation, trafficking and dynamics in complex systems or as a function of microenvironment are also strongly encouraged. Studies that examine the interconnectivity of metal-dependent processes with systems level responses relevant to organismal health or disease are also strongly encouraged, for example those that probe the effect of chemical exposure on metal homeostasis or the impact of metal-based drugs on cellular processes.

Recommended Suppliers

ChinaShenzhen Suiru Changhao Technology Co., Ltd.
GermanyInstrument Systems GmbH
ChinaHangzhou Aibe Co., Ltd.
ChinaZhengzhou Kangzheng Biotechnology Co., Ltd.
GermanyAlenco Environmental Consult GmbH
GermanyARTA Armaturen- und Tankgerätebau GmbH & Co. KG
ChinaWuhan Whu Hyvan Co., Ltd.
ChinaGuangzhou Xiangmei Chemical Technology Co., Ltd.
GermanyMedizintechnik PATZ GmbH
GermanyHAW Linings GmbH
Disclaimer
This page provides academic journal information for reference and research purposes only. We are not affiliated with any journal publishers and do not handle publication submissions. For publication-related inquiries, please contact the respective journal publishers directly.
If you notice any inaccuracies in the information displayed, please contact us at [email protected]. We will promptly review and address your concerns.