Journal of Electron Spectroscopy and Related Phenomena
Basic Information
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation. The journal encourages contributions in the general area of atomic, molecular, ionic, liquid and solid state spectroscopy carried out using electron impact, synchrotron radiation (including free electron lasers) and short wavelength lasers. Papers using photoemission and other techniques, in which synchrotron radiation, Free Electron Lasers, laboratory lasers or other sources of ionizing radiation, combined with electron velocity analysis are especially welcome. The materials properties addressed include characterization of ground and excited state properties as well as time resolved electron dynamics. The individual techniques of electron spectroscopy include photoelectron spectroscopy of both outer and inner shells; inverse photoemission; spin-polarised photoemission; time resolved 2-photon photoemission, resonant and non-resonant Auger spectroscopy including ion neutralization studies; edge techniques (EXAFS, NEXAFS,...) , resonant and non-resonant inelastic X-ray scattering (RIXS), spectro-microscopy, high resolution electron energy loss spectroscopy; electron scattering and resonance electron capture; electron spectroscopy in conjunction with microscopy; penning ionization spectroscopy including scanning tunneling spectroscopy; theoretical treatments of the photoemission, X-ray emission, Auger, energy loss and Penning ionization processes. Contributions on instrumentation and technique development, date acquisition - analysis - quantification are also welcome. Subject areas covered include spectroscopic characterization of materials and processes concerning: - surfaces, interfaces, and thin films; - atomic and molecular physics, clusters; - semiconductor physics and chemistry; - materials for photovoltaics; - materials science including: metal surfaces, nanoparticles, ceramics, strongly correlated systems, polymers, biomaterials and other organic films; - catalysis
CiteScore
Subject | Rank | Percentile |
---|---|---|
Physics and AstronomyRadiation |
26 / 58 | 56% |
Journal Statistics
Submission Information
Submission Website:
https://www.editorialmanager.com/ELSPECRecommended Journals
Related Articles
From Douglas fir to renewable H2-enriched syngas via ex situ catalytic pyrolysis over metal nanoparticles–nanocellulose derived carbon catalysts
Hanwu Lei, Chenxi Wang, Moriko Qian, Elmar Villota, Wendy Mateo
DOI: 10.1039/C9SE00860H
Co-production of pure hydrogen, carbon dioxide and nitrogen in a 10 kW fixed-bed chemical looping system
Sebastian Bock, Robert Zacharias, Viktor Hacker
DOI: 10.1039/C9SE00980A
The limits to biocatalysis: pushing the envelope
Roger A. Sheldon, Dean Brady
DOI: 10.1039/C8CC02463D
Life cycle assessment of power-to-gas with biogas as the carbon source
Xiaojin Zhang, Julia Witte, Tilman Schildhauer, Christian Bauer
DOI: 10.1039/C9SE00986H
In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheets
Hao Huang, Jia Li, Ya Yi, Jiahong Wang, Yihong Kang, Paul K. Chu, H. C. Ong, Xue-Feng Yu
DOI: 10.1039/C8CC00029H
Coexisting order and disorder within a common 40-residue amyloid-β fibril structure in Alzheimer's disease brain tissue
Ujjayini Ghosh, Wai-Ming Yau, Robert Tycko
DOI: 10.1039/C8CC01967C
MnO/C cubo-polyhedrons derived from α-MnO2@ZIF-8 as anode materials for high-performance lithium-ion batteries
Lei Zhang, Jiaoyu Xiao
DOI: 10.1039/C9SE00637K
Palladium-catalyzed silaborative carbocyclizations of 1,6-diynes
Qian Zhang, Qiu-Ju Liang, Jian-Lin Xu, Yun-He Xu
DOI: 10.1039/C8CC00097B
Microscopic insights into long-range 1D ordering in a dense semi-disordered molecular overlayer
Ryan T. Hannagan, Isaac Onyango, Amanda Larson, E. Charles H. Sykes
DOI: 10.1039/D1CC01574E
Recent developments in carbon nitride based films for photoelectrochemical water splitting
Rui-Qin Zhang
DOI: 10.1039/C9SE00785G