Manufacturing of urea co-crystals by spiral gas–solid two-phase flow (S-GSF) based on spiral jet mills: a continuous, solvent-free, and scalable mechanochemical method

文献情報

出版日 2023-11-01
DOI 10.1039/D3CE00833A
インパクトファクター 3.545
著者

Yong Song, Zhiyuan Jin, Jiawei Zhang, Bo Jin, Rufang Peng



要旨

In this work, we report a spiral gas–solid two-phase flow (S-GSF) method based on spiral jet mills for the continuous mechanochemical preparation of urea co-crystals for the first time. Urea–adipic acid (UAA), urea–catechol (URCAT), urea–salicylic acid (USA) and urea–gypsum (URCASU) co-crystals were prepared to demonstrate the feasibility of this approach. The prepared products were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The results showed that powdered products of the urea co-crystals can be obtained continuously by using this method without the addition of any solvent in the preparation process. Moreover, the UAA co-crystal prepared by S-GSF is in single polycrystalline form I, while form II, which appears in milling and ball milling, is not observed. The transcrystallization behavior among different polymorphs of the UAA co-crystal was studied and their thermodynamic stability was investigated by theoretical calculations. The results indicated that form I is a thermodynamically stable polymorph, and S-GSF is selective for the formation of form I. This phenomenon can be attributed to the fact that S-GSF provides strong mechanical action, as well as a low-temperature reaction environment, which distinguishes it from existing mechanochemical methods.

掲載誌

CrystEngComm

CrystEngComm
CiteScore: 5.5
自己引用率: 7.7%
年間論文数: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

おすすめサプライヤー

中国深セン市誠峰智造有限公司
中国深圳市優品生物科技有限公司発売 Branch Office
ドイツブクラー GmbH
中国上海エイ让消费者引导活动,增加用户参与感和互动性。农バイオテクノロジーrtc有限公司
中国成都同創源医薬科技有限公司
ドイツウェロマー GmbH
ドイツゼファ・ラバーサービス GmbH
中国江苏仁信作物保護技術有限公司
中国天津旅畅科技发展有限公司
中国东莞市コレイダ化学科技有限公司
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。