3D-printed palladium/activated carbon-based catalysts for the dehydrogenation of formic acid as a hydrogen carrier

文献信息

发布日期 2023-10-20
DOI 10.1039/D3TA05644A
影响因子 12.732
作者

Irene Diaz-Herrezuelo, Gonzalo Vega, Marina Navarro, Pilar Miranzo, M. Isabel Osendi, Jose A. Casas, Asuncion Quintanilla, Manuel Belmonte



摘要

The development of structured catalyst supports to promote chemical process intensification is of great interest, and porous activated carbon (AC) is an excellent material to overcome this challenge. In addition, the current increasing hydrogen demand and its limitations in terms of transportation and storage require the development of novel approaches for the application of hydrogen. In this study, highly porous and robust 3D-printed patterned AC-based architectures were additive manufactured using the direct ink writing technology. Different AC inks containing a boehmite gel with no organic additives were rheologically characterized to select the most suitable ink for building AC supports, which were thermally treated to promote solid–solid contacts and increase their robustness (strength of ∼0.5 MPa) while maintaining a high porosity (86%). Subsequently, the AC supports were impregnated with a 5 wt% palladium (Pd) precursor to develop a 3D Pd/AC catalyst, which could generate hydrogen via the dehydrogenation of formic acid (FA), a very promising liquid organic hydrogen carrier, in a fixed-bed reactor. These 3D catalysts produced CO-free hydrogen from FA under ambient conditions with an FA conversion of 81% and hydrogen flow rate of 6 mL min−1. Furthermore, the long-term experiments in continuous mode operation showcased their good catalytic stability and recyclability. These results demonstrate that 3D Pd/AC catalysts exhibit a great potential to develop a new technology using FA as hydrogen carrier.

来源期刊

Journal of Materials Chemistry A

Journal of Materials Chemistry A
CiteScore: 19.5
自引率: 4.7%
年发文量: 2211

Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. The journals have a strong history of publishing quality reports of interest to interdisciplinary communities and providing an efficient and rigorous service through peer review and publication. The journals are led by an international team of Editors-in-Chief and Associate Editors who are all active researchers in their fields. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C. More than one Journal of Materials Chemistry journal may be suitable for certain fields and researchers are encouraged to submit their paper to the journal that they feel best fits for their particular article. Example topic areas within the scope of Journal of Materials Chemistry A are listed below. This list is neither exhaustive nor exclusive. Artificial photosynthesis Batteries Carbon dioxide conversion Catalysis Fuel cells Gas capture/separation/storage Green/sustainable materials Hydrogen generation Hydrogen storage Photocatalysis Photovoltaics Self-cleaning materials Self-healing materials Sensors Supercapacitors Thermoelectrics Water splitting Water treatment

推荐供应商

中国陕西博林生物技术有限公司
中国浙江车头制药有限公司
中国珠海美通化学预分散颜料色片有限公司
中国广州木森药业有限公司
中国浙江金砖铜技术有限公司。
中国上海沪东锅炉厂
德国NMI图宾根大学自然科学与医学研究所
GRYF HB spol. s.r.o
中国芜湖市汤普森生物科技有限公司
中国弘创净油设备公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。